

PowerTrap_®

MODÈLE GP10L FONTE ACIER COULÉ ACIER INOX COULÉ

POMPE MÉCANIQUE COMPACTE POUR LA RÉCUPÉRATION ET L'ÉVACUATION DE CONDENSÂT

Avantages

Pompe destinée à une large gamme d'applications, idéale pour l'évacuation d'un faible débit de condensât de collecteurs installés à faible hauteur.

- 1. La pompe peut manier du condensât à température élevée sans cavitation.
- Pas besoin d'énergie électrique ni de contrôle auxiliaire; l'appareil est donc INTRINSEQUEMENT SUR.
- 3. Fonctionnement possible avec une faible hauteur de charge (au moins 300 mm).
- 4. Accès facile aux pièces internes, sans devoir démonter les tuyauteries : ceci simplifie le nettoyage et réduit les coûts d'entretien.
- 5. Les pièces internes en acier inoxydable de qualité supérieure et les surfaces de travail traitées thermiquement garantissent un fonctionnement fiable.
- 6. De conception compacte, la pompe peut être installée dans un espace réduit.
- 7. Possibilité d'installer un compteur de cycles en option.

Directive équipements sous pression (DESP)

Classification selon la directive équipements sous pression n° 2014/68/UE, fluides du groupe 2

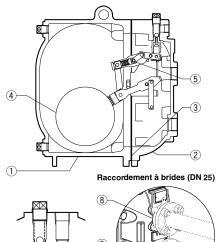
Dimension	Catégorie	Marquage CE
DN 25, DN 40		Avec marquage CE et déclaration de conformité

Caractéristiques techniques

Modèle		GP10L		
Dagaaydayaayt	Entrée & sortie du fluide pompé	Taraudé et à brides*	Taraudé	
Raccordement	Fluide moteur & échappement	Taraudé		
	Entrée × sortie du fluide pompé	1"/ DN 25 × 1"/ DN 25	1½" ×1"	
Dimensions	Arrivée du fluide moteur	1/2"		
	Orifice d'échappement	1/2"		
Pression de fonctionnement maximale (bar) PMO		10,5		
Température de fonctionnement max. (°C) TMO		185		
Gamme de press	sions du fluide moteur (bar) 0,3 à 10,5		,5	
Contre-pression maximale admissible		0,5 bar en-dessous de la pression du fluide moteur applique		
Volume d'un cycle de déversement (£)		environ 6		
Fluide moteur**		Vapeur d'eau saturée, air comprimé, azote		
Fluide pompé***		Condensât de vapeur, eau		
Caractéristiques optionnelles pour les zones dangereuses		ATEX : & II2G Ex h IIC T3 Gb		

^{*} Pour plus de détails sur la connection à brides, voir illustration ci-dessous à droite ** Ne pas utiliser avec des fluides toxiques, inflammables ou autrement dangereux. *** Ne convient pas pour tous fluides d'une densité inférieure de 0,85 ou supérieure de 1, ou pour tous fluides toxiques, inflammables ou autrement dangereux

1 bar = 0,1 MPa

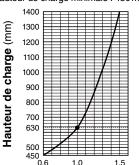

CONDITIONS DE CONCEPTION (PAS LES CONDITIONS DE FONCTIONNEMENT) : Pression maximale admissible (bar) PMA : 13 (fonte), 21 (acier coulé), 16 (acier inox coulé) Température maximale admissible (°C) TMA : 200 (fonte), 220 (acier coulé, acier inox coulé)

En cas de dépassement des limites de fonctionnement données, des dysfonctionnements ou accidents pourraient survenir. Il se peut que des règlements locaux limitent l'utilisation du produit endeçà des spécifications indiquées.

No.	Désignation			Matériau	DIN*	ASTM/AISI*
	① Corps			Fonte FC250	0.6025	A126 CI.B
1				Acier coulé A216 Gr.WCB	1.0619	_
				Acier inox coulé A351 Gr.CF8	1.4312	_
	Couvercle			Fonte FC250	0.6025	A126 CI.B
2				Acier coulé A216 Gr.WCB	1.0619	_
				Acier inox coulé A351 Gr.CF8	1.4312	_
3	Joint de couvercle			Composé graphite	_	_
4	Flotteur			Acier inox SUS316L	1.4404	AISI316L
(5)	Mécanisme à action instantanée			Acier inox	_	_
	Jeu de soupape d'admission du fluide moteur Siège de soupape		Acier inox SUS440C	1.4125	AISI440C	
6				Acier inox SUS420F	1.4028	AISI420F
7	Jeu de soupape d'échappement		Soupape	Acier inox SUS440C	1.4125	AISI440C
			Siège de soupape	Acier inox SUS420F	1.4028	AISI420F
(8)	Clapet de Retenue (Entrée)	Taraudé	CK3MG**	Acier inox coulé A351 Gr.CF8	1.4312	_
(8)		A brides	CKF5M	Acier inox SUS304	1.4301	AISI304
(9)	Clapet de Retenue (Sortie)	Taraudé	CK3MG**	Acier inox coulé A351 Gr.CF8	1.4312	_
9)		A brides	CKF3M	Acier inox coulé A351 Gr.CF8	1.4312	_

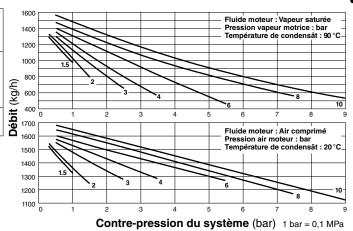
Copyright © TLV

Consulting · Engineering · Services


Courbes des débits

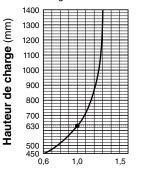
FACTEUR DE CORRECTION

Pour courbe de débit A avec une hauteur de charge autre que de 630 mm (Hauteur de charge minimale : 450 mm)

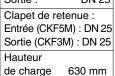


Contre-pression du système (bar) 1 bar = 0,1 MPa

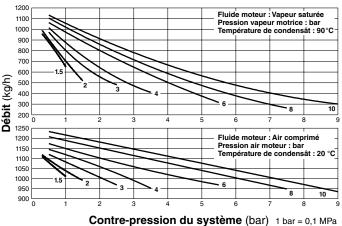
В Raccordem.: Taraudé Entrée : 11/2" Sortie: 1" Clapet de СКЗМС retenue: Entrée: 11/2" Sortie: 1" Hauteur


de charge

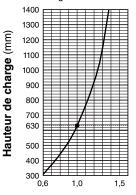
630 mm



• FACTEUR DE CORRECTION


Pour courbe de débit B avec une hauteur de charge autre que de 630 mm (Hauteur de charge minimale : 450 mm)

C Raccordem.: A brides Entrée: **DN 25 DN 25** Sortie: Clapet de retenue :



NOTES:

• FACTEUR DE CORRECTION

Pour courbe de débit C avec une hauteur de charge autre que de 630 mm (Hauteur de charge minimale : 300 mm)

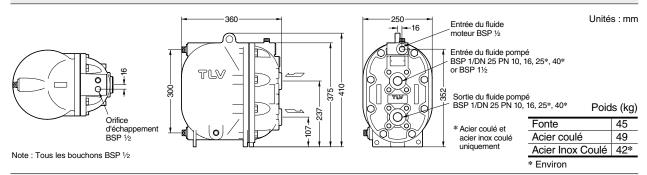
Des clapets de retenue doivent être installés aux points d'entrée et de sortie du fluide pompé. Pour obtenir les niveaux de débit indiqués ci-dessus avec la configuration standard du GP10L, il est indispensable d'utiliser soit le clapet de retenue TLV CK3MG (entrée et sortie), soit les clapets de retenue TLV CKF5M (entrée) et CKF3M (sortie).

• La pression du fluide moteur moins la contre-pression doit être supérieure à 0,5 bar.

- Dans les applications à système fermé, le fluide moteur doit être compatible avec le fluide pompé. Si le fluide moteur est un gaz non-condensable, comme de l'air ou de l'azote, demander conseil à TLV.
- Une crépine doit être placée au point d'entrée du fluide moteur et du fluide pompé.

Collecteur de condensât Hauteur de charge

HAUTEUR DE CHARGE ET PRESSIONS


Le débit est déterminé par le fluide moteur, la pression du fluide moteur (Pm) et la contre-pression (P2).

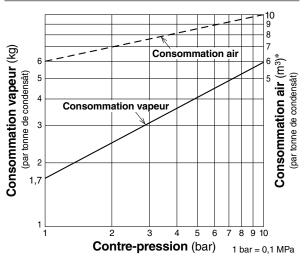
Vérifier que : débit × facteur de correction > débit requis.

Copyright © TLV SDS F2404-02

Consulting · Engineering · Services

Dimensions

Dimension du collecteur/réservoir

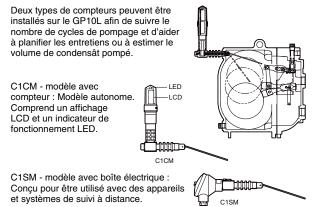

Le collecteur/réservoir doit avoir une capacité suffisante pour stocker le condensât produit et déchargé pendant l'opération du PowerTrap. Un collecteur sera généralement plus grand qu'un réservoir parce qu'il doit contenir le condensât à la fois comme un fluide et comme de la vapeur de revaporisation, et séparer les deux pour que seul le condensât soit envoyé vers le PowerTrap.

Dimension du collecteur (avec vapeur de revaporisation) (Longueur : 1m)

Vapeur de revaporisation jusqu'à (kg/h)	Diamètre du collecteur (mm)	Diamètre du tuyau de d'évent (mm)	
25	80	25	
50	100	50	
75	125	50	
100	150	80	
150	200	80	
200	200	100	
300	250	125	
400	300	125	
500	350	150	
700	400	200	
800	450	200	
1000	500	200	
1100	500	250	
1400	550	250	
1500	600	250	

 Si la vapeur de revaporisation se condense avant qu'elle ne pénètre le réservoir/ collecteur, comparer les tableaux 1 et 2 et choisir la plus grande des deux dimensions.

Consommation de vapeur ou d'air (fluide moteur)


^{*} Consommation équivalente d'air à 20 °C et pression atmosphérique

2. Dimension du réservoir (sans vapeur de revaporisation)

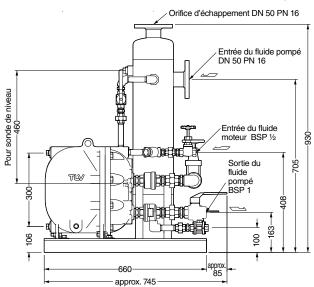
Quantité de condensât	Diamètre (mm) et longueur du reservoir (m)						
(kg/h)	40	50	80	100	150	200	250
300 ou moins	1,2 m	0,7					
400	1,5	1,0					
500	2,0	1,2	0,5				
600		1,5	0,6				
800		2,0	0,8	0,5			
1000			1,0	0,7			
1500			1,5	1,0			
2000			2,0	1,3	0,6		
3000				2,0	0,9	0,5	
4000					1,2	0,7	
5000					1,4	0,8	0,5
6000					1,7	1,0	0,6
7000					2,0	1,2	0,7
8000						1,3	0,8
9000						1,5	0,9
10000						1,7	1,0

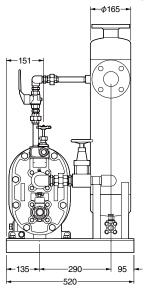
La longueur du réservoir peut être réduite de 50% si la pression motrice (Pm) divisée par la contre-pression (P2) est supérieure ou égale à 2 (lorsque Pm \div P2 \geqq 2).

Compteur de cycles (option)

Des modèles à sécurité intrinsèque sont aussi disponibles. Consultez la fiche de données (SDS) relative au compteur de cycles pour plus de détails.

Copyright © TLV SDS F2404-02

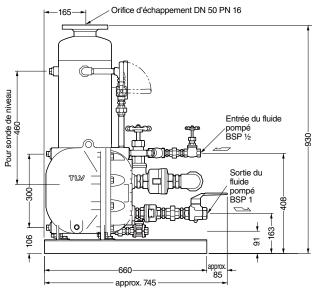


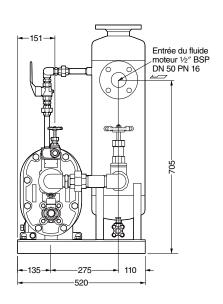

Structure du système (système ouvert)

Structure unique type S1L

Débit : voir graphique A (facteur de correction non requis, débit maximal : 1t/h)

Vapeur de revaporisation permissible maximale :100 kg/h Capacité du réservoir :12 ℓ Poids :120 kg





Structure unique type S1M

Débit : voir graphique **B** (facteur de correction non requis, débit maximal :1,5 t/h)

Vapeur de revaporisation permissible maximale : 200 kg/h Capacité du réservoir : 22ℓ Poids : 130 kg

Standards :

Raccordements à brides : DIN 2501 Raccordements taraudés : DIN 2999 Autres standards disponibles

Les caractéristiques techniques actuelles peuvant varier de celles indiquées. Consulter TLV pour des détails.

Unités : mm

TLV. EURO ENGINEERING FRANCE SARL

Parc d'Ariane 2, bât. C, 290 rue Ferdinand Perrier, 69800 Saint Priest, FRANCE

Tél: [33]-(0)4-72482222 Fax: [33]-(0)4-72482220 E-mail: tlv@tlv-france.com https://www.tlv.com

ISO 9001