

DAMPFVERDICHTER

TYP SC (SPHÄROGUSS)

DAMPFVERDICHTER ZUR VERWERTUNG VON NACHDAMPF (NIEDERDRUCKDAMPF)

Beschreibung

Maximiert die Energieausbeute in Dampfanlagen durch Verdichtung von Nachdampf zur Nutzung auf einem höheren Druckniveau. Dies spart Energie und verringert CO₂-Emissionen.

- 1. Die Restenergie von Nachdampf wird bei höheren Drücken genutzt.
- 2. Bei Einsatz des Druckreglers ohne Hilfsenergie COS keine Elektrik erforderlich und daher ideal für Ex-Bereiche geeignet.
- Die Verdichtereinheit ist mit einer Kondensathebestation kombinierbar, die das nach Abzug des Nachdampfs drucklose Kondensat automatisch fördert.
- 4. Eigenentwickelter Hochleistungsejektor.
- Das Druckregelventil COS verfügt über einen eingebauten Zyklontrockner und Kondensatableiter. Daher hohe Dampfqualität des Treibdampfs für eine hohe Standfestigkeit und stabilen Ejektordruck.

Druckgeräterichtlinie (DGRL)

CE

Dieses Produkt entspricht den Anforderungen der Druckgeräterichtlinie (PED, 2014/68/EU) und trägt soweit erforderlich die CE-Kennzeichnung.

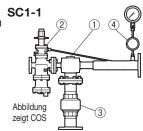
Technische Daten

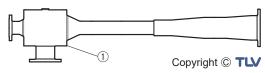
Тур*		Regelbare Verdichtereinheit							Dampfverdichter für große Leistungen				
		SC1-1	SC1-2	SC1-3	SC2-1	SC2-2	SC2-3	SC7-1	SC7-3	SC14	SC21	SC31	
Druckregler		COS	CV-COS	CV10	cos	CV-COS	CV10	cos	CV10	_			
	Treibdampf		DN 25			DN 50			DN 80		DN 100	DN 150	DN 200
Anschluss	Mischdampf		DN 80			DN 100			DN 150		DN 200	DN 250	DN 300
	Nachdan	npf	DN 80						DN	100	DN 150	DN 200	DN 250
Maximaler Betriebsdruck (bar ü) PMO		1	6	20	16	10	20	16	20	20			
Druckbereich Treibdampf (bar ü)		6 -	16	6 - 20	6 - 16	6 - 10	6 - 20	6 - 16	6 - 20	6 - 20			
Maximale Betriebstemperatur (°C) TMO		220											
Maximale Saugleistung			Siehe "Typenauswahl und Leistungskurven" auf Seiten 3 und 4										
Mischdampfdruck Maximum		Kontaktieren Sie TLV**											
(erreichbarer Dr	uck) (bar ü)	Minimum	1	0,5		1	0,5		1	0,5	Kontaktieren Sie TLV**		e TLV**
Druckbereich Nachdampf		Atmosphärischer Druck oder höher***											
Saugmedium		Dampf											

* Lieferung von Produkten mit von o.g. Betriebsbedingungen abweichenden Betriebsdaten ist u.U. möglich.

** Abhängig von Bedingungen wie Druck und Volumen von Treibdampf und Nachdampf. Siehe "Typenauswahl und Leistungskurven" auf
Seiten 3 und 4 für eine Annäherung. *** Kontaktieren Sie TLV zu Bedingungen bei oder unter dem Atmosphärendruck.

AUSLEGUNGSDATEN (NICHT BETRIEBSDATEN):


Maximal zulässiger Druck (bar ü) PMA: 16 (COS/CV-COS), 20 (CV10); Dampfverdichter für große Leistungen: 20 Maximal zulässige Temperatur (°C) TMA: 220


Die spezifizierten Betriebsgrenzen NICHT ÜBERSCHREITEN. Nichtbeachtung kann zu Betriebsstörungen oder Unfällen führen. Lokale Vorschriften können zur Unterschreitung der angegebenen Werte zwingen.

Nr.	Baute	il	Werkstoff	DIN ¹⁾	ASTM/AISI1)	
1	Ejektor		C-Stahl S25C	1.1158	AISI1025	
		cos	Sphäroguss GGG40.3 ²⁾	0.7043	A395	
2	Druckregler	CV-COS	Sphäroguss GGG40.3 ²⁾	0.7043	A395	
		CV10	Stahlguss A216 WCC	_	_	
3	Rückschlagve	ntil ^{3), 4)}	Edelstahlguss A351 Gr.CF8	1.4312	_	
4	Manometer ⁵⁾		_	_		
(5)	Druckmessum	former ^{6), 7)}	_	_	_	

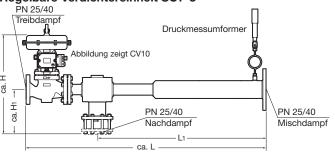
¹⁾ Vergleichbare Werkstoffe ²⁾ Option: Edelstahlguss ³⁾ Rückschlagventil für SC1/SC2 mit Schraubflanschen ⁴⁾ SC7 nur mit Verbindungsbolzen, Muttern und Dichtungen ⁵⁾ nur COS ⁶⁾ nur CV-COS/CV10 ⁷⁾ Siehe umseitig

SC14/SC21/SC31

Consulting & Engineering Service

Systemaufbau (Regelbare Verdichtereinheit)

Dampfverdichter: Regelbare Verdichtereinheit SC1/SC2/SC7 zum Aufbau z.B.* auf: Kondensathebestationen Druckregler ohne Hilfsenergie Kondensatförderung von drucklosem Integrierter Kondensat Zyklontrockner und besondere Eignung Kondensatableiter für Ex-Bereiche • Keine Elektrik erforderlich CV-COS Elektropneumatisches Kondensatentspanner Stellventil Verwertung von Integrierter Entspannungs-Zyklontrockner und dampf unter Druck Kondensatableiter • Hohe Regelgüte CV10 Kondensatpumpe Elektropneumatisches Hochdruck-Stellventil Kondensatrückführung • Hohe Regelgüte


* Produktausführungen können von den gezeigten abweichen. Für Details wenden Sie sich bitte an TLV.

Abmessungen, Gewichte

Regelbare Verdichtereinheit SC1-1

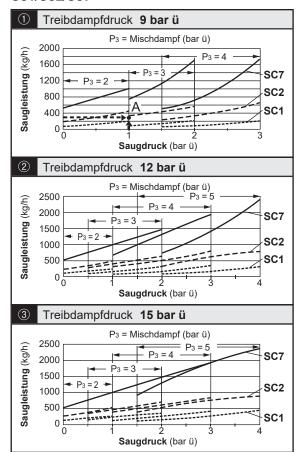
Regelbare Verdichtereinheit SC7-3

Dampfverdichter für große Leistungen SC14/SC21/SC31

PN 25/40 \Treibdampf	PN 25/40 Mischdampf	
# # # # # # # # # # # # # # # # # # #	PN 25/40 Nachdampf	
	L1L	

Regelbare Verdichtereinheit (mm										
		DN								
Model	Treib- dampf	Misch- dampf	Nach- dampf	L	L1	Н	Нı	Gewicht (kg)		
		PN 25/40)							
SC1-1						782		50		
SC1-2	25	80		836	545	862	500	50		
SC1-3			80			785		35		
SC2-1						845		100		
SC2-2	50	100		1121	734	921	530	100		
SC2-3						835		85		
SC7-1	80	150	100	1715	1140	710	300	155		
SC7-3	130	100	1651	1140	645	300	130			
Auffanancabliacea sind PSP: andere Ansablusenermen auf Anfrage										

Muffenanschlüsse sind BSP; andere Anschlussnormen auf Anfrage

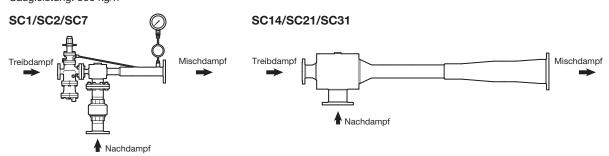

Dampfverdichter für große Leistungen (mm)											
Model		DN									
	Treib- Misch- dampf dampf		Nach- dampf	L	L1	Н	H1	Gewicht (kg)			
		PN 25/40									
SC14	100	200	150	2220	1900	475	300	240			
SC21	150	250	200	2600	2155	620	400	440			
SC31	200	300	250	3000	2500	720	450	700			

Copyright © TLV SDS G4802-04

Consulting & Engineering Service

Typenauswahl und Leistungskurven

Regelbare Verdichtereinheit SC1/SC2/SC7


Dampfverdichter für große Leistungen SC14/SC21/SC31

Typenauswahl

Anwendungsbeispiel

Treibdampf: 9 bar ü Mischdampf: 3 bar ü Saugdruck: 1 bar ü Saugleistung: 300 kg/h

Aus Saugdruck und Saugleistung des Anwendungsbeispiels ergibt sich in der Typenauswahlkurve ① für 9 bar ü der Punkt A für den gewünschten Mischdampfdruck (P₃) von 3 bar.

Da der Punkt A im Abschnitt für Mischdampfdruck 3 bar ü knapp unter der Leistungskurve für SC2 liegt, wird Typ SC2 oder SC7 gewählt.

Für Saugleistungen größer als die von SC31 wenden Sie sich bitte an TLV.

Copyright © TLV SDS G4802-04

Consulting & Engineering Service

Leistungsdiagramme

Ermittlung der Durchsätze (Treibdampf und Mischdampf)

Bei 9 bar ü beträgt das Mischverhältnis* gemäß der Leistungskurve ① etwa 3,9. Treibdampfdurchsatz und Mischdampfdurchsatz können wie unten in A) und B) gezeigt berechnet werden:

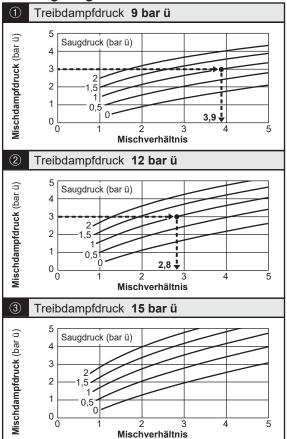
*Mischverhältnis = Treibdampfmenge (kg/h) / Saugleistung (kg/h)

Wenn der Treibdampfdruck zwischen den Drücken der Leistungsdiagramme ① bis ③ liegt, wird das Mittel der Mischverhältnisse der höheren und der niedrigeren Kurve ermittelt.

Berechnungsbeispiel (für Treibdampfdruck 10 bar ü) Gemäß Leistungsdiagramm ① für Treibdampfdruck 9 bar ü liegt das Mischverhältnis bei 3,9, gemäß Leistungsdiagramm ② für Treibdampfdruck 12 bar ü liegt das Mischverhältnis bei 2,8. Das gemittelte Mischverhältnis liegt bei 3,5 (siehe C)).

A) Treibdampfmenge = Mischverhältnis \times Saugleistung

 $= 3.9 \times 300 \text{ kg/h}$ = 1170 kg/h


B) Mischdampfdurchsatz = Treibdampfmenge + Saugleistung

= 1170 kg/h + 300 kg/h= 1470 kg/h

C) Berechnungsbeispiel (für Treibdampfdruck 10 bar ü)

3,9 -
$$\frac{(10 - 9) \text{ bar } \ddot{u}}{(12 - 9) \text{ bar } \ddot{u}} \times (3,9 - 2,8) = 3,5$$

Leistungsdiagramme

Hinweis: Die hier angegebene Typenauswahl und die Durchsatzangaben sind Näherungen. Fragen Sie TLV für Details zu Typenauswahl und Leistungsdaten.

TLY: EURO ENGINEERING GmbH

Daimler-Benz-Straße 16-18, 74915 Waibstadt, Germany Tel: [49]-(0)7263-9150-0 Fax: [49]-(0)7263-9150-50 E-mail: info@tlv-euro.de https://www.tlv.com

