

TLV. Technical Information

Vortex flowmeter EF200F-C

Copyright © 2022 by TLV CO., LTD. All rights reserved

Table of contents

About this document Symbols

Function and system design Measuring principle Measuring system

Input Measured variable Measuring range Operable flow range

Output Output signal Signal on alarm Load Low flow cut off Galvanic isolation Protocol-specific data

Power supply Terminal assignment Supply voltage Power consumption Current consumption Power supply failure Electrical connection Potential equalization Terminals Cable entries Cable specification Overvoltage protection

Performance characteristics Reference operating conditions Maximum measured error Repeatability Response time Influence of ambient temperature

Installation Mounting location Orientation Inlet and outlet runs Length of connecting cable Mounting the transmitter housing

Environment Ambient temperature range Storage temperature Climate class Degree of protection Vibration- and shock-resistance Electromagnetic compatibility (EMC) Process Medium temperature range Pressure-temperature ratings Nominal pressure of sensor Pressure specifications Pressure loss Thermal insulation

Mechanical construction Dimensions in SI units Dimensions in US units Weight Materials Flange connections

Operability Operating concept Languages Local operation Remote operation

Certificates and approvals CE mark RCM-tick symbol

HART certification

Pressure Equipment Directive Experience Other standards and guidelines

Application packages Wet steam detection Wet steam measurement

Supplementary documentation Standard documentation

Registered trademarks

TLV EXPRESS LIMITED WARRANTY

Service

About this document

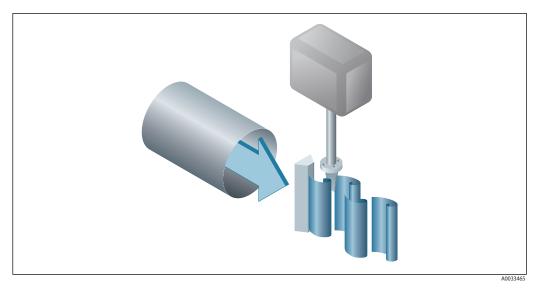
Symbols

Electrical symbols

Symbol	Meaning
	Direct current
\sim	Alternating current
\sim	Direct current and alternating current
<u>+</u>	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.
	Protective Earth (PE) A terminal which must be connected to ground prior to establishing any other connections.
	The ground terminals are situated inside and outside the device:Inner ground terminal: Connects the protectiv earth to the mains supply.Outer ground terminal: Connects the device to the plant grounding system.

Symbols for certain types of information

Symbol	Meaning
	Permitted Procedures, processes or actions that are permitted.
	Preferred Procedures, processes or actions that are preferred.
×	Forbidden Procedures, processes or actions that are forbidden.
i	Tip Indicates additional information.
	Reference to documentation.
	Reference to page.
	Reference to graphic.
	Visual inspection.


Symbols in graphics

Symbol	Meaning
1, 2, 3,	Item numbers
1., 2., 3., …	Series of steps
A, B, C,	Views
A-A, B-B, C-C,	Sections
≈ →	Flow direction

Function and system design

Measuring principle

Vortex meters work on the principle of the Karman vortex street When fluid flows past a bluff body, vortices are alternately formed on both sides with opposite directions of rotation. These vortices each generate a local low pressure. The pressure fluctuations are recorded by the sensor and converted to electrical pulses. The vortices develop very regularly within the permitted application limits of the device. Therefore, the frequency of vortex shedding is proportional to the volume flow.

Sample graphic

The calibration factor (K-factor) is used as the proportional constant:

K-Factor = Pulses Unit Volume [m³]

Within the application limits of the device, the K-factor only depends on the geometry of the device. It is for Re > 10000:

• Independent of the flow velocity and the fluid properties viscosity and density

• Independent of the type of substance under measurement: steam, gas or liquid

The primary measuring signal is linear to the flow. After production, the K-factor is determined in the factory by means of calibration. It is not subject to long-time drift or zero-point drift.

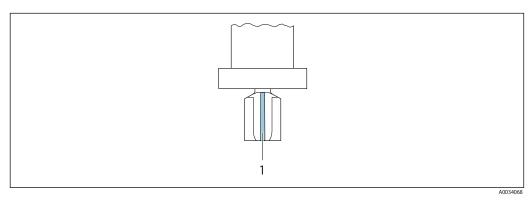
The device does not contain any moving parts and does not require any maintenance.

The capacitance sensor

The sensor of a vortex flowmeter has a major influence on the performance, robustness and reliability of the entire measuring system.

The robust DSC sensor is:

- burst-tested
- tested against vibrations


• tested against thermal shock (thermal shocks of 150 K/s)

The measuring device uses the tried-and-tested, capacitance measuring technology, which is already in use in over 450 000 measuring points worldwide. Thanks to its design, the capacitance sensor is also particularly mechanically resistant to temperature shocks and pressure shocks in steam pipelines.

Temperature measurement

The measuring device can also measure the temperature of the medium.

The temperature is measured via Pt 1000 temperature sensors. These are located in the paddle of the DSC sensor and are therefore in the direct vicinity of the fluid.

1 DSC sensor

Pressure and temperature measurement

The measuring device can also measure the pressure and temperature of the fluid.

The temperature is measured via Pt 1000 temperature sensors. These are located in the paddle of the DSC sensor and are therefore in the direct vicinity of the fluid. Pressure measurement is located directly on the meter body at the level of the bluff body. The position of the pressure tapping was chosen so that pressure and temperature could be measured at the same point. This enables accurate density and/or energy compensation of the fluid using pressure and temperature. The measured pressure tends to be somewhat lower than the line pressure. For this reason, TLV offers a correction to the line pressure (integrated in the device).

Order code for "Sensor version; DSC sensor; measuring tube":

• Option "Mass steam; 316L; 316L (integrated pressure/temperature measurement)"

Lifelong calibration

Experience has shown that recalibrated measuring devices demonstrate a very high degree of stability compared to their original calibration: The recalibration values were all within the original measuring accuracy specifications of the devices. This applies to the measured volume flow, the device's primary measured variable.

Various tests and simulation have shown that once the radii of the edges on the bluff body are less than 1 mm (0.04 in), the resulting effect does not have a negative impact on accuracy.

If the radii of the edges on the bluff body do not exceed 1 mm (0.04 in), the following general statements apply (in the case of non-abrasive and non-corrosive media, such as in most water and steam applications):

- The measuring device does not display an offset in the calibration and the accuracy is still guaranteed.
- All the edges on the bluff body have a radius that is typically smaller in size. As the measuring devices are naturally also calibrated with these radii, the measuring device remains within the specified accuracy rating provided that the additional radius that is produced as a result of wear and tear does not exceed 1 mm (0.04 in).

Consequently, it can be said that the product line offers lifelong calibration if the measuring device is used in non-abrasive and non-corrosive media.

Inlet run correction

Inlet run correction makes it possible to shorten the necessary inlet run before the measuring device to a minimum length of $10 \times DN$. If the inlet run available is too short, the measuring device can correct the measured error depending on the preceding disruption in the flow profile. This produces an additional measured error of ±0.5 % o.r. ¹⁾

The Inlet Run Correction function can be used for the following pressure ratings and nominal diameters:

DN 15 to 150 (1/2 to 6")

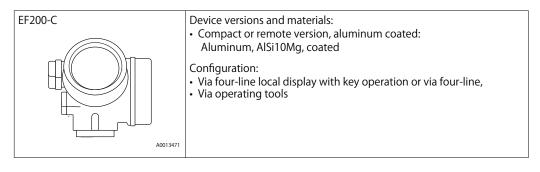
- EN (DIN)
- ASME B16.5, Sch. 40/80

Inlet run correction is possible for the following flow obstructions:

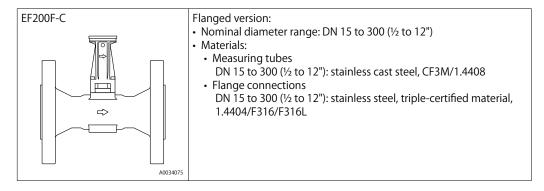
- Single elbow (90° elbow)
- Double elbow (2 \times 90° elbows, opposite)
- Double elbow 3D (2 \times 90° elbows, opposite, not on one plane)
- Reduction by one nominal diameter size

Inlet and outlet runs to be considered \rightarrow See 46

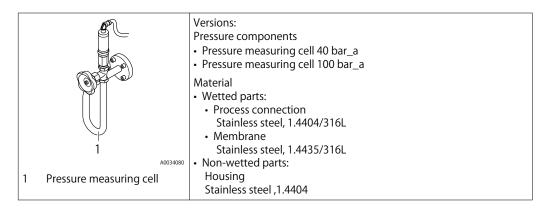
¹⁾ o.r. = of reading


Measuring system

The device consists of a transmitter and a sensor.


Two device versions are available:

- Compact version transmitter and sensor form a mechanical unit.
- Remote version transmitter and sensor are mounted in separate locations.


Transmitter

Sensor

Pressure measuring cell

Input

Measured variable

Direct measured variables

	Description	Measured variable
Ī	Mass; 316L; 316L (integrated temperature measurement)	Volume flowTemperature

Calculated measured variables

Version with pressure measuring cell	
Description	Measured variable
Mass; 316L; 316L (integrated temperature measurement)	 Corrected volume flow Mass flow Calculated saturated steam pressure Energy flow Heat flow difference Specific volume

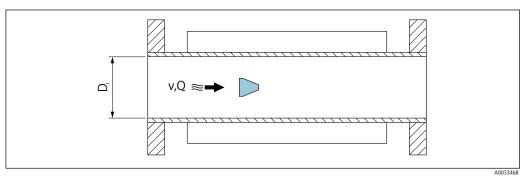
Order code for "Sensor version", option "mass flow (integrated temperature measurement)" combined with order code for "Application package"

Description	Measured variable
Wet steam measurement	 Steam quality Total mass flow Condensate mass flow

Measuring range

The measuring range is dependent on the nominal diameter, the fluid and environmental influences.

The following specified values are the largest possible flow measuring ranges (Q_{min} to Q_{max}) for each nominal diameter. Depending on the fluid properties and environmental influences, the measuring range may be subject to additional restrictions. Additional restrictions apply to both the lower range value and the upper range value.


Flow measuring ranges in SI units

DN [mm]	Liquids [m ³ /h]	Gas/steam [m³/h]
15	0.076 to 4.9	0.39 to 25
25	0.23 to 15	1.2 to 130
40	0.57 to 37	2.9 to 310
50	0.96 to 62	4.9 to 820
80	2.2 to 140	11 to 1800
100	3.7 to 240	19 to 3 200
150	8.5 to 540	43 to 7 300
200	15 to 950	75 to 13 000
250	23 to 1500	120 to 20 000
300	33 to 2100	170 to 28 000

DN	Liquids	Gas/steam
[in]	[ft³/min]	[ft³/min]
1/2	0.045 to 2.9	0.23 to 15
1	0.14 to 8.8	0.7 to 74
1½	0.34 to 22	1.7 to 180
2	0.56 to 36	2.9 to 480
3	1.3 to 81	6.4 to 1 100
4	2.2 to 140	11 to 1900
6	5 to 320	25 to 4300
8	8.7 to 560	44 to 7 500
10	14 to 880	70 to 12 000
12	19 to 1 300	99 to 17 000

Flow measuring ranges in US units

Flow velocity

- D_i Internal diameter of measuring tube (corresponds to dimension K \rightarrow See page 25)
- v Velocity in measuring tube
- Q Flow

1

The internal diameter of measuring tube D_i is denoted in the dimensions as dimension K. \rightarrow See page 25.

Calculation of flow velocity:

$$v [m/s] = \frac{4 \cdot Q [m^{3}/h]}{\pi \cdot D_{i} [m]^{2}} \cdot \frac{1}{3600 [s/h]}$$
$$v [ft/s] = \frac{4 \cdot Q [ft^{3}/min]}{\pi \cdot D_{i} [ft]^{2}} \cdot \frac{1}{60 [s/min]}$$

A0034301

A0034291

A0034302

Lower range value

A restriction applies to the lower range value due to the turbulent flow profile, which only occurs with Reynolds numbers greater than 5000. The Reynolds number is dimensionless and indicates the ratio of the inertia force of a fluid to its viscous force when flowing and is used as a characteristic variable for pipe flows. In the case of pipe flows with Reynolds numbers less than 5000, periodic vortices are no longer generated and flow rate measurement is no longer possible.

The Reynolds number is calculated as follows:

$$Re = \frac{4 \cdot Q [m^3/s] \cdot \rho[kg/m^3]}{\pi \cdot D_i [m] \cdot \mu [Pa \cdot s]}$$
$$Re = \frac{4 \cdot Q [ft^3/s] \cdot \rho[lbm/ft^3]}{\pi \cdot D_i [ft] \cdot \mu [lbf \cdot s/ft^2]}$$

- Re Reynolds number
- Q Flow
- D_i Internal diameter of measuring tube (corresponds to dimension K \rightarrow See 57)
- μ Dynamic viscosity
- ρ Density

The Reynolds number, 5000 together with the density and viscosity of the fluid and the nominal diameter, is used to calculate the corresponding flow rate.

$$\begin{aligned} Q_{\text{Re}=5000} \left[\text{m}^{3}/\text{h} \right] &= \frac{5000 \cdot \pi \cdot \text{D}_{\text{i}} \left[\text{m} \right] \cdot \mu \left[\text{Pa} \cdot \text{s} \right]}{4 \cdot \rho \left[\text{kg/m}^{3} \right]} \cdot 3600 \left[\text{s/h} \right] \\ Q_{\text{Re}=5000} \left[\text{ft}^{3}/\text{h} \right] &= \frac{5000 \cdot \pi \cdot \text{D}_{\text{i}} \left[\text{ft} \right] \cdot \mu \left[\text{lbf} \cdot \text{s/ft}^{2} \right]}{4 \cdot \rho \left[\text{lbm/ft}^{3} \right]} \cdot 60 \left[\text{s/min} \right] \end{aligned}$$

 $Q_{Re=5000}$ Flow rate is dependent on the Reynolds number

 D_i Internal diameter of measuring tube (corresponds to dimension K \rightarrow See page 25)

- μ Dynamic viscosity
- ρ Density

The measuring signal must have a certain minimum signal amplitude so that the signals can be evaluated without any errors. Using the nominal diameter, the corresponding flow can also be derived from this amplitude. The minimum signal amplitude depends on the setting for the sensitivity of the DSC sensor (s), the steam quality (x) and the force of the vibrations present (a). The value mf corresponds to the lowest measurable flow velocity without vibration (no wet steam) at a density of 1 kg/m³ (0.0624 lbm/ft^3). The value mf can be set in the range from 6 to 20 m/s (1.8 to 6 ft/s) (factory setting 12 m/s (3.7 ft/s)) with the Sensitivity parameter (value range 1 to 9, factory setting 5).

The lowest flow velocity that can be measured on account of the signal amplitude v_{AmpMin} is derived from the Sensitivity parameter and the steam quality (x) or from the force of vibrations present (a).

$$v_{AmpMin} [m/s] = max \begin{cases} \frac{mf [m/s]}{x^2} & \sqrt{\frac{1 [kg/m^3]}{\rho[kg/m^3]}} \end{cases}$$
$$v_{AmpMin} [ft/s] = max \begin{cases} \frac{mf [ft/s]}{x^2} & \sqrt{\frac{0.062 [lb/ft^3]}{\rho[lb/ft^3]}} \end{cases}$$

- v_{AmpMin} Minimum measurable flow velocity based on signal amplitude
- mf Sensitivity

x Steam quality

ρ Density

$$\begin{aligned} Q_{AmpMin}[m^{3}/h] &= \frac{V_{AmpMin}[m/s] \cdot \pi \cdot D_{i}[m]^{2}}{4 \cdot \sqrt{\frac{\rho[kg/m^{3}]}{1 \ [kg/m^{3}]}}} \cdot 3600 \ [s/h] \\ Q_{AmpMin}[ft^{3}/min] &= \frac{V_{AmpMin}[ft/s] \cdot \pi \cdot D_{i}[ft]^{2}}{4 \cdot \sqrt{\frac{\rho \ [lbm/ft^{3}]}{0.0624 \ [lbm/ft^{3}]}}} \cdot 60 \ [s/min] \end{aligned}$$

Q_{AmpMin} Minimum measurable flow rate based on signal amplitude

 v_{AmpMin} $\;$ Minimum measurable flow velocity based on signal amplitude $\;$

 D_i Internal diameter of measuring tube (corresponds to dimension K \rightarrow See page 25)

ρ Density

The effective lower range value Q_{Low} is determined using the largest of the three values $Q_{min,}$ $Q_{Re\,=5000}$ and $Q_{AmpMin.}$

$Q_{Low}[m^3/h] = max$	$ \left\{ \begin{array}{l} Q_{min}[m^3/h] \\ Q_{Re=5000}[m^3/h] \\ Q_{AmpMin}[m^3/h] \end{array} \right. \label{eq:Qmin}$
Q _{Low} [ft ³ /min] = max	
	A0034313

 Q_{Low}
 Effective lower range value

 Q_{min}
 Minimum measurable flow rate

 Q_{Re=5000}
 Flow rate is dependent on the Reynolds number

 Q_{AmpMin}
 Minimum measurable flow rate based on signal amplitude

A0034316

A003432

Upper range value

The measuring signal amplitude must be below a certain limit value to ensure that the signals can be evaluated without error. This results in a maximum permitted flow rate Q_{AmpMax} :

$$Q_{AmpMax}[m^{3}/h] = \frac{350 \,[m/s] \cdot \pi \cdot D_{i}[m]^{2}}{4 \cdot \sqrt{\frac{\rho[kg/m^{3}]}{1 \,[kg/m^{3}]}}} \cdot 3600 \,[s/h]$$
$$Q_{AmpMax}[ft^{3}/min] = \frac{1148 [ft/s] \cdot \pi D_{i}[ft]^{2}}{4 \cdot \sqrt{\frac{\rho \,[lbm/ft^{3}]}{0.0624 \,[lbm/ft^{3}]}}} \cdot 60 \,[s/min]$$

Q_{AmpMax} Maximum measurable flow rate based on signal amplitude

```
D_1 Internal diameter of measuring tube (corresponds to dimension K\rightarrow See page 25)
```

ρ Density

For gas applications, an additional restriction applies to the upper range value with regard to the Mach number in the measuring device, which must be less than 0.3. The Mach number Ma describes the ratio of the flow velocity v to the sound velocity c in the fluid.

$$Ma = \frac{v [m/s]}{c [m/s]}$$
$$Ma = \frac{v [ft/s]}{c [ft/s]}$$

- Ma Mach number
- v Flow velocity
- c Sound velocity

The corresponding flow rate can be derived using the nominal diameter.

$$Q_{Ma=0.3} [m^{3}/h] = \frac{0.3 \cdot c [m/s] \cdot \pi D_{i}[m]^{2}}{4} \cdot 3600 [s/h]$$
$$Q_{Ma=0.3} [ft^{3}/min] = \frac{0.3 \cdot c [ft/s] \cdot \pi D_{i}[ft]^{2}}{4} \cdot 60 [s/min]$$

 $Q_{\text{Ma}\,=\,0.3}$ $\,\,$ Restricted upper range value is dependent on Mach number $\,$

- c Sound velocity
- D_i Internal diameter of measuring tube (corresponds to dimension K \rightarrow See page 25)
- ρ Density

$Q_{\text{High}} [\text{m}^{3}/\text{h}] = \min \begin{cases} Q_{\text{max}} [\text{m}^{3}/\text{h}] \\ Q_{\text{AmpMax}} [\text{m}^{3}/\text{h}] \\ Q_{\text{Ma=0.3}} [\text{m}^{3}/\text{h}] \end{cases}$	
$Q_{High} [ft^{3}/min] = min \begin{cases} Q_{max} [ft^{3}/min] \\ Q_{AmpMax} [ft^{3}/min] \\ Q_{Ma=0.3} [ft^{3}/min] \end{cases}$	

The effective upper range value Q_{High} is determined using the smallest of the three values Q_{max} Q_{AmpMax} and $Q_{\text{Ma=0.3}}.$

Q_{High}	Effective upper range value
ƳHigh	Encentre apper lange value

- Q_{max} Maximum measurable flow rate
- Q_{AmpMax} Maximum measurable flow rate based on signal amplitude
- $Q_{\,\text{Ma}\,=\,0.3}$ $\,\,$ Restricted upper range value is dependent on Mach number $\,\,$

For liquids, the occurrence of cavitation may also restrict the upper range value.

Operable flow range	The value, which is typically up to 49: 1, may vary depending on the operating conditions (ratio between upper range value and lower range value)
Input signal	Integrated pressure and temperature measurement
	The measuring device can also directly record external variables for density and energy compensation.
	 This product version offers the following benefits: Measurement of pressure, temperature and flow in a true 2-wire version Recording of pressure and temperature at the same point, thus ensuring maximum accuracy of density and energy compensation Easy testing of pressure measurement accuracy:
	 Application of pressure by pressure calibration unit, followed by input into measuring device Automatic error correction performed by device in the event of a deviation Availability of calculated line pressure.

Output

Output signal

Current output

Current output 1	4-20 mA (passive)
Resolution	<1μΑ
Damping	Adjustable: 0.0 to 999.9 s
Assignable measured variables	 Volume flow Corrected volume flow Mass flow Flow velocity Temperature Pressure Calculated saturated steam pressure Steam quality Total mass flow Energy flow Heat flow difference

A0034338

Pulse/frequency/switch output

Function	nction Can be set to pulse, frequency or switch output		
Version	Passive, open collector		
Maximum input values	• DC 35 V • 50 mA		
Voltage drop	 For ≤ 2 mA: 2 V For 10 mA: 8 V 		
Residual current	≤ 0.05 mA		
Pulse output			
Pulse width	Adjustable: 5 to 2000 ms		
Maximum pulse rate	100 Impulse/s		
Pulse value	Adjustable		
Assignable measured variables	 Mass flow Volume flow Corrected volume flow Total mass flow Energy flow Heat flow difference 		
Frequency output			
Output frequency	Adjustable: 0 to 1000 Hz		
Damping	Adjustable: 0 to 999 s		
Pulse/pause ratio	1:1		
Assignable measured variables	 Volume flow Corrected volume flow Mass flow Flow velocity Temperature Calculated saturated steam pressure Steam quality Total mass flow Energy flow Heat flow difference Pressure 		
Switch output			
Switching behavior	Binary, conductive or non-conductive		
Switching delay	Adjustable: 0 to 100 s		
Number of switching cycles	Unlimited		
Assignable functions	 Off On Diagnostic behavior Limit value Volume flow Corrected volume flow Mass flow Flow velocity Temperature Calculated saturated steam pressure Steam quality Total mass flow Energy flow Heat flow difference Pressure Reynolds number Totalizer 1-3 Status Status of low flow cut off 		

Signal on alarm

Depending on the interface, failure information is displayed as follows:

Current output 4 to 20 mA

4 to 20 mA

Failure mode	 Choose from: 4 to 20 mA in accordance with NAMUR recommendation NE 43 4 to 20 mA in accordance with US Min. value: 3.59 mA Max. value: 22.5 mA Freely definable value between: 3.59 to 22.5 mA Actual value Last valid value 	
--------------	---	--

Pulse/frequency/switch output

Pulse output		
Failure mode	No pulses	
Frequency output		
Failure mode • Actual value • 0 Hz • Defined value: 0 to 1250 Hz		
Switch output		
Failure mode	Choose from: • Current status • Open • Closed	

Local display

Plain text display	Vith information on cause and remedial measures	

Status signal as per NAMUR recommendation NE 107

Interface/protocol

- Via digital communication:
 HART protocol
- Via service interface
- CDI service interface

	Plain text display	With information on cause and remedial measures
--	--------------------	---

Load	Load for current output: 0 t unit	to 500 Ω , depending on the external supply voltage of the power supply			
	Calculation of the maximu	ım load			
	line resistance must be ob	Depending on the supply voltage of the power supply unit (U _s), the maximum load (R _B) including line resistance must be observed to ensure adequate terminal voltage at the device. In doing so, observe the minimum terminal voltage			
	• For U $_{S} = 17.9$ to 18.9 V: R • For U $_{S} = 18.9$ to 24 V: R $_{B}$ • For U $_{S} = \ge 24$ V: R $_{B} \le 500$	\leq (U _S - 13 V): 0.022 A			
	R _B [Ω] 500 400				
	300				
	200				
	100				
	0				
	16 18	3 20 22 24 26 28 30 32 34 36 U _s [V]			
	Operating range				
	Supply voltage of power s Maximum load: R _B ≤ (19 V				
Low flow cut off	The switch points for low fl	low cut off are preset and can be configured.			
Galvanic isolation	All inputs and outputs are	galvanically isolated from one another.			
Protocol-specific data	HART				
	Manufacturer ID	0x11			
	Device type ID	0x0038			
	HART protocol revision	7			
	Device description files (DTM, DD)	Consult TLV for more information.			
	HART load	 Min. 250 Ω Max. 500 Ω 			

Power supply

Terminal assignment

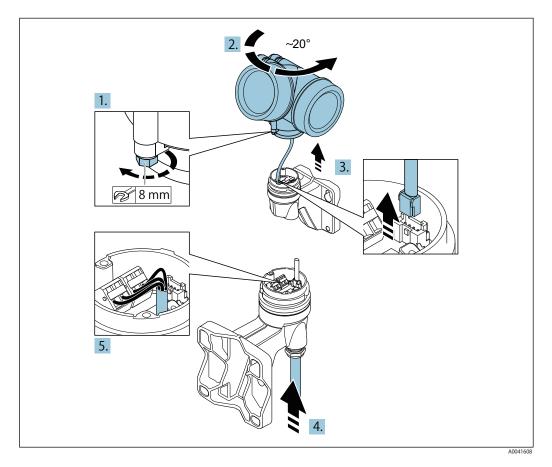
Transmitter

Connection versions

	B A C		
	3 4 1 2		
	+ - + -		
		A0033475	
Maxi	mum number of terminals		
Term	inals 1 to 4:		
With	out integrated overvoltage protection		
A B C			

Terminal numbers			
Output 1		Output 2	
1 (+)	1 (+) 2 (-)		4 (-)
4-20 mA (passive)		Pulse/frequency/switch output (passive)	

1) Output 1 must always be used; output 2 is optional.


Connecting cable for remote version

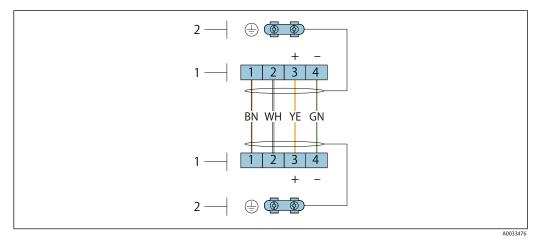
Transmitter and sensor connection housing

In the case of the remote version, the sensor and transmitter are mounted separately from on another and connected by a connecting cable. Connection is performed via the sensor connection housing and the transmitter housing.

Terminals are always used to connect the connecting cable in the sensor connection housing (tightening torques for screws for cable strain relief: 1.2 to 1.7 Nm).

Connection via terminals

- 1. Loosen the securing clamp of the transmitter housing.
- 2. Turn the transmitter housing clockwise by approx. 20°.
- 3. NOTICE

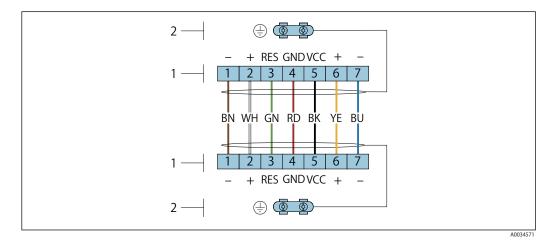

The connection board of the wall housing is connected to the electronics board of the transmitter via a signal cable!

Pay attention to the signal cable when lifting the transmitter housing!

Lift the transmitter housing, plug the signal cable out of the connection board of the wall holder and remove the transmitter housing.

- 4. Release the cable gland and insert the connecting cable (use the shorter stripped end of the connecting cable).
- 5. Wire the connecting cable \rightarrow Fig. 2, See 29 \rightarrow Fig. 3, See 29.
- 6. Reverse the removal procedure to reassemble the transmitter housing.
- 7. Firmly tighten the cable gland.

Connecting cable



Terminals for connection compartment in the transmitter wall holder and the sensor connection housing

- 1 Terminals for connecting cable
- 2 Grounding via the cable strain relief

Terminal number	Assignment	Cable color Connecting cable
1	Supply voltage	Brown
2	Grounding	White
3	RS485 (+)	Yellow
4	RS485 (–)	Green

Connecting cable (option "mass pressure-/temperature-compensated") Order code for "Sensor version; DSC sensor; measuring tube", option

Terminals for connection compartment in the transmitter wall holder and the sensor connection housing

- 1 Terminals for connecting cable
- 2 Grounding via the cable strain relief

Terminal number	Assignment	Cable color Connecting cable
1	RS485 (-) DPC	Brown
2	RS485 (+) DPC	White
3	Reset	Green
4	Supply voltage	red
5	Grounding	Black
6	RS485 (+)	Yellow
7	RS485 (–)	Blue

Supply voltage

Transmitter

An external power supply is required for each output.

Supply voltage for a compact version without a local display

Order code for "Output; input"	Minimum terminal voltage ¹⁾	Maximum terminal voltage
4-20 mA, pulse/frequency/switch output	≥ DC 12 V	DC 35 V

1) The minimum terminal voltage increases if local operation is used: see the following table

Increase in minimum terminal voltage

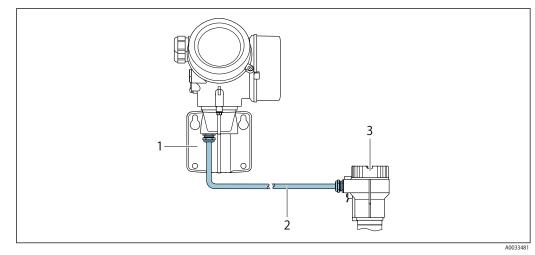
"Display"	Increase in minimum terminal voltage
LCD display Local operation	+ DC 1 V

"Sensor version; DSC sensor; measuring tube"	Increase in minimum terminal voltage
Mass steam; 316L; 316L (integrated pressure/temperature measurement)	+ DC 1 V

For information about the load \rightarrow See p.17

Power consumption	Transmitter				
	Order code for "Output; input"	Maximum power consumption Operation with output 1: 770 mW Operation with output 1 and 2: 2770 mW 			
	4-20 mA, pulse/frequency switch output				
	Option C: 4-20 mA HART + 4-20 mA				
Current consumption	Current output				

For every 4-20 mA or 4-20 mA current output: 3.6 to 22.5 mA

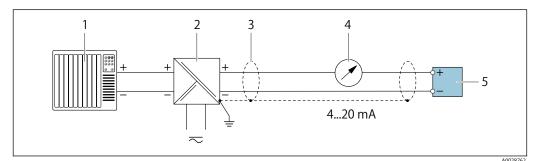

If the optionDefined value is selected in the Failure mode parameter : 3.59 to 22.5 mA

Electrical connection Connecting the transmitter	Power supply failure	 Totalizers stop at the last value measured. Depending on the device version, the configuration is retained in the device memoryor in the pluggable data memory (HistoROM DAT). Error messages (incl. total operated hours) are stored. 		
	Electrical connection	Connecting the transmitter		

1 Cable entries for inputs/outputs

Remote version connection

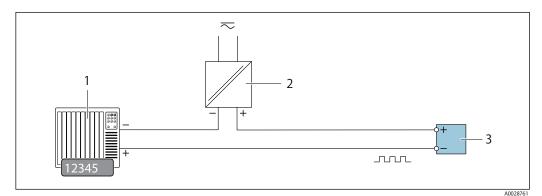
Connecting cable


Connecting cable connection

- 1 Wall holder with connection compartment (transmitter)
- 2 Connecting cable
- 3 Sensor connection housing

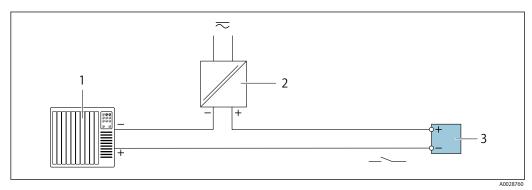
Terminals are always used to connect the connecting cable in the sensor connection housing (tightening torques for screws for cable strain relief: 1.2 to 1.7 Nm).

Connection examples


Current output 4-20 mA HART

Connection example for 4 to 20 mA HART current output (passive)

- 1 Automation system with current input (e.g. PLC)
- 2 Power supply
- 3 Cable shield provided at one end. The cable shield must be grounded at both ends to comply with EMC requirements; observe cable specifications
- 4 Analog display unit: observe maximum load
- 5 Transmitter


Pulse/frequency output

Connection example for pulse/frequency output (passive)

- 1 Automation system with pulse/frequency input (e.g. PLC)
- 2 Power supply
- 3 Transmitter: Observe input values

Switch output

Connection example for switch output (passive)

- Automation system with switch input (e.g. PLC)
- 2 Power supply

1

3 Transmitter: Observe input values

Potential equalization	Requirements				
	Please consider the following to ensure correct measurement:				
	 Same electrical potential for the fluid and sensor 				
	 Remote version: same Company-internal gro 	e electrical potential for the sensor and transmitter punding concepts			
	Pipe material and gro				
erminals		hout integrated overvoltage protection: plug-in spring terminals for wire			
		2.5 mm ² (20 to 14 AWG) :h integrated overvoltage protection: screw terminals for wire cross-sectio			
	0.2 to 2.5 mm ² (24 to				
able entries	 Thread for cable entry: For non-hazardous and hazardous areas (not for XP): G ¹/₂" 				
able specification	Permitted temperature	range			
	 The installation guidelines that apply in the country of installation must be observed. The cables must be suitable for the minimum and maximum temperatures to be expected. 				
	Signal cable				
	Current output 4 to 20 mA				
	A shielded cable is recommended. Observe grounding concept of the plant.				
	Pulse/frequency/switch output				
	Standard installation cable is sufficient.				
	Connecting cable for remote version				
	Connecting cable (stand				
	5 .				
	Standard cable	$2 \times 2 \times 0.5 \text{ mm}^2/22 \text{ AWG}$ DVC cable with common chield (2 pairs pair			
	Standard cable	$2\times2\times0.5$ mm^2 (22 AWG) PVC cable with common shield (2 pairs, pair-stranded)^1)			
	Standard cable Flame resistance				
		stranded) ¹⁾			
	Flame resistance	stranded) ¹⁾ According to DIN EN 60332-1-2			
	Flame resistance Oil-resistance	stranded) ¹⁾ According to DIN EN 60332-1-2 According to DIN EN 60811-2-1			

Connecting cable (option "mass pressure-/temperature-compensated") Order code for "Sensor version; DSC sensor; measuring tube", option

Standard cable	[(3 \times 2) + 1] \times 0.34 mm ² (22 AWG)PVC cable with common shield (3 pairs, pair-stranded) ¹⁾
Flame resistance	According to DIN EN 60332-1-2
Oil-resistance	According to DIN EN 60811-2-1
Shielding	Galvanized copper-braid, opt. density approx. 85%
Cable length	30 m (98 ft)
Operating temperature	When mounted in a fixed position: -50 to $+105$ °C (-58 to $+221$ °F); when cable can move freely: -25 to $+105$ °C (-13 to $+221$ °F)

1) UV radiation may cause damage to the outer jacket of the cable. Protect the cable from exposure to sun as much as possible.

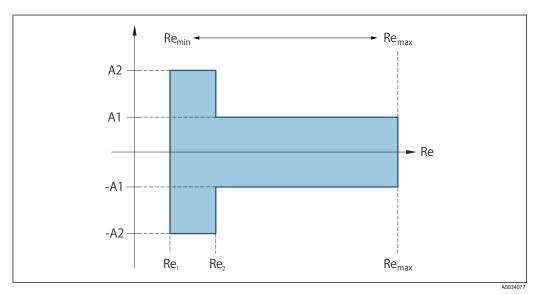
Overvoltage protection

The device can be ordered with integrated overvoltage protection for diverse approvals: Order code for "Accessory mounted", option NA "Overvoltage protection"

Input voltage range	Values correspond to supply voltage specifications \rightarrow See 20 ¹)
Resistance per channel	2 · 0.5 Ω max.
DC sparkover voltage	400 to 700 V
Trip surge voltage	< 800 V
Capacitance at 1 MHz	< 1.5 pF
Nominal discharge current (8/20 μ s)	10 kA
Temperature range	-40 to +85 °C (-40 to +185 °F)

1) The voltage is reduced by the amount of the internal resistance $I_{min}\cdot\,R_i$

Depending on the temperature class, restrictions apply to the ambient temperature for device versions with overvoltage protection .


Performance characteristics

Reference operating	Error limits following ISO/DIN 11631
conditions	• +20 to +30 °C (+68 to +86 °F)
	• 2 to 4 bar (29 to 58 psi)
	 Calibration system traceable to national standards
	Calibration with the process connection corresponding to the particular standard

Maximum measured error

Base accuracy

Reynold	s number	
Re ₁	5 000	
Re ₂	10 000	
Re _{min}	Reynolds number for minimum permitted volume flow in measuring tube	
	 Standard Option N "0.65% volume PremiumCal 5-point 	
	$Q_{AmpMin} [m^{3}/h] = \frac{V_{AmpMin} [m/s] \cdot \pi \cdot D_{i} [m]^{2}}{4 \cdot \sqrt{\frac{\rho[kg/m^{3}]}{1 [kg/m^{3}]}}} \cdot 3600 [s/h]$	
	$\begin{aligned} Q_{\text{AmpMin}}\left[\text{ft}^{3}/\text{min}\right] &= \frac{v_{\text{AmpMin}}\left[\text{ft/s}\right] \cdot \pi \cdot D_{\text{i}}\left[\text{ft}\right]^{2}}{4 \cdot \sqrt{\frac{\rho \left[\text{lbm}/\text{ft}^{3}\right]}{0.0624 \left[\text{lbm}/\text{ft}^{3}\right]}}} \cdot 60 \left[\text{s/min}\right] \end{aligned}$	A0034304
Re _{max}	Defined by internal diameter of measuring tube, Mach number and maximum permitted velocity in measuring tube	
	$Re_{max} = \frac{\rho \cdot 4 \cdot Q_{Heigh}}{\mu \cdot \cdot K}$	
	Further information on effective upper range value $Q_{High} \rightarrow See 13$	A0034339

Volume flow

Medium type		Incompressible	Compressible
Reynolds number range	Measured value deviation	Standard	Standard
Re 2to Re max	A1	< 0.75 %	< 1.0 %
Re 1 to Re 2	A2	< 5.0 %	< 5.0 %

Temperature

- Saturated steam and liquids at room temperature, if T > 100 °C (212 °F): < 1 °C (1.8 °F)
- Gas: < 1% o.r. [K]
- Volume flow: 70 m/s (230 ft/s): 2 % o.r.
- Rise time 50% (stirred under water, following IEC 60751): 8 s

Pressure

Order code for "Pressure component" ¹⁾	Nominal value	Pressure ranges and measured errors ²⁾		
	[bar abs.]	Pressure range [bar abs.]	Maximum measured error	
Pressure measuring cell 40 bar_a	40	$\begin{array}{l} 0.01 \leq p \leq 8 \\ 8 \leq p \leq 40 \end{array}$	0.5 % of 8 bar abs. 0.5 % o.r.	
Pressure measuring cell 100 bar_a	100	$\begin{array}{l} 0.01 \leq p \leq 20 \\ 20 \leq p \leq 100 \end{array}$	0.5 % of 20 bar abs. 0.5 % o.r.	

1) The "mass" sensor version (integrated pressure/temperature measurement) is available only for measuring devices in HART communication mode.

2) The specific measured errors refer to the position of the measurement in the measuring tube and do not correspond to the pressure in the pipe connection line upstream or downstream from the measuring device. No measured error is specified for the measured error for the "pressure" measured variable that can be assigned to the outputs.

Mass flow saturated steam

Sensor version				Mass (integrated temperature measurement)	Mass (integrated pressure/ temperature measurement) ¹⁾
Process pressure [bar abs.]	Flow velocity [m/s (ft/s)]	Reynolds number range	Measured value deviation	Standard	Standard
> 4.76	20 to 50 (66 to 164)	Re ₂ to Re _{max}	A1	< 1.7 %	< 1.5 %
> 3.62	10 to 70 (33 to 230)	Re ₂ to Re _{max}	A1	< 2.0 %	< 1.8 %
In all cases not specified here, the following applies: < 5.7 %					

1) Sensor version available only for measuring devices in HART communication mode.

Mass flow of superheated steam/gases

Sensor version				temperature measurement) ¹⁾ n	Mass (integrated temperature measurement) + external pressure compensation ²⁾
Process pressure [bar abs.]	Flow velocity [m/s (ft/s)]	Reynolds number range	Measured value deviation	Standard	Standard
< 40	All velocities	Re ₂ to Re _{max}	A1	< 1.5 %	< 1.7 %
< 120		Re ₂ to Re _{max}	A1	< 2.4 %	< 2.6 %
In all cases not specified here, the following applies: < 6.6 %					

1) Sensor version available only for measuring devices in HART communication mode.

2) The use of a Cerabar S is required for the measured errors listed in the following section. The measured error used to calculate the error in the measured pressure is 0.15 %.

Water mass flow

Sensor version			Mass (integrated temperature measurement)	
Process pressure [bar abs.]	Flow velocity [m/s (ft/s)]	Reynolds number range	Measured value deviation	Standard
All pressures	All velocities	Re ₂ to Re _{max}	A1	< 0.85 %
		Re ₁ to Re ₂	A2	< 2.7 %

1) Order code for "Calibration flow", option N "0.65% volume PremiumCal 5-point"

Mass flow (user-specific liquids)

Example

- Acetone is to be measured at fluid temperatures from +70 to +90 °C (+158 to +194 °F).
- For this purpose, the Reference temperature parameter (7703) (here 80 °C (176 °F)), Reference density parameter (7700) (here 720.00 kg/m³) and Linear expansion coefficient parameter (7621) (here 18.0298 × 10⁻⁴ 1/VC) must be entered in the transmitter.
- The overall system uncertainty, which is less than 0.9% for the example above, is comprised of the following measurement uncertainties: uncertainty of volume flow measurement, uncertainty of temperature measurement, uncertainty of the density-temperature correlation used (including the resulting uncertainty of density).

Mass flow (other media)

Depends on the selected fluid and the pressure value, which is specified in the parameters. Individual error analysis must be performed.

Diameter mismatch correction

The measuring device is calibrated according to the ordered process connection. This calibration takes account of the edge at the transition from the mating pipe to the process connection. If the mating pipe used deviates from the ordered process connection, a diameter mismatch correction can compensate for the effects. The difference between the internal diameter of the ordered process connection and the internal diameter of the mating pipe used must be taken into consideration.

The measuring device can correct shifts in the calibration factor which are caused, for example, by a diameter mismatch between the device flange (e.g. ASME B16.5/Sch. 80, DN 50 (2")) and the mating pipe (e.g. ASME B16.5/Sch. 40, DN 50 (2")). Only apply diameter mismatch correction within the following limit values (listed below) for which test measurements have also been performed.

Flange connection:

- DN 15 (1/2"): ±20% of the internal diameter
- DN 25 (1"): ±15% of the internal diameter
- DN 40 (11/2"): ±12% of the internal diameter
- DN \ge 50 (2"): ±10% of the internal diameter

If the standard internal diameter of the ordered process connection differs from the internal diameter of the mating pipe, an additional measuring uncertainty of approx. 2% o.r. must be expected.

Example

Influence of the diameter mismatch without using the correction function:

- Mating pipe DN 100 (4"), Schedule 80
- Device flange DN 100 (4"), Schedule 40
- This installation position results in a diameter mismatch of 5 mm (0.2 in). If the correction function is not used, an additional measuring uncertainty of approx. 2% o.r. must be expected.
- If the basic conditions are met and the feature is enabled, the additional measuring uncertainty is 1 % o.r.

For detailed information on the parameters for diameter mismatch correction, see the Operating Instructions

³⁾ single gas, gas mixture, air: NEL40; natural gas: ISO 12213-2 contains AGA8-DC92, AGA NX-19, ISO 12213-3 contains SGERG-88 and AGA8 Gross Method 1

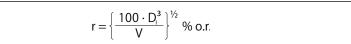
A0042121-EN

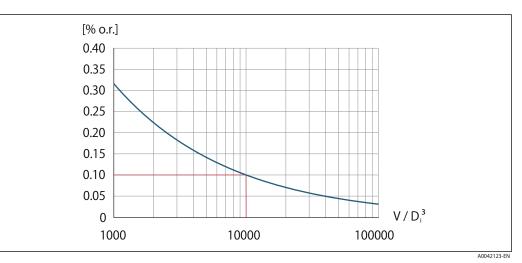
Accuracy of outputs

The outputs have the following base accuracy specifications.

Current output

Accuracy ±10 μA	Accuracy	±10 μA
-----------------	----------	--------


Pulse/frequency output


o.r. = of reading

Accuracy Max. ±100 ppm o.r.

o.r. = of reading

Repeatability = 0.1% o.r. with a measured volume [m³]

The repeatability can be improved if the measured volume is increased. Repeatability is not a device characteristic but a statistical variable that is dependent on the boundary conditions indicated.

Response time

If all the configurable functions for filter times (flow damping, display damping, current output time constant, frequency output time constant, status output time constant) are set to 0, in the event of vortex frequencies of 10 Hz and higher a response time of $max(T_v, 100 \text{ ms})$ can be expected.

In the event of measuring frequencies < 10 Hz, the response time is > 100 ms and can be up to 10 s. T_{ν} is the average vortex period duration of the flowing fluid.

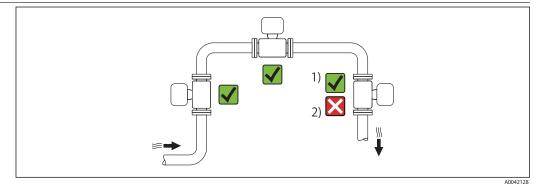
Influence of ambient temperature

Current output

o.r. = of reading

Additional error, in relation to the span of 16 mA:

 rature coefficient at pint (4 mA)	0.02%/10 K
 rature coefficient oan (20 mA)	0.05%/10 K


Pulse/frequency output

o.r. = of reading

Temperature coefficient	Max. ±100 ppm o.r.

Installation

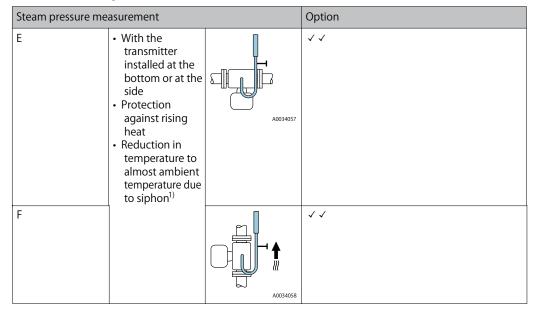
Mounting location

- 1 Installation suitable for gases and steam; the measuring device must be installed upside-down in a horizontal pipe if the order code for "Application package", "Wet steam measurement" is used
- 2 Installation not suitable for liquids

Orientation

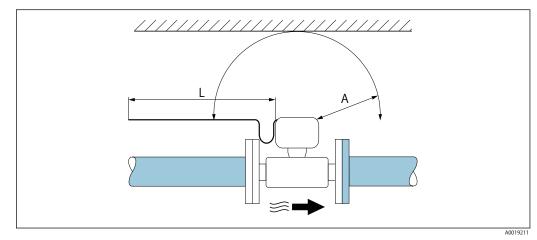
The direction of the arrow on the sensor nameplate helps you to install the sensor according to the flow direction (direction of medium flow through the piping).

Vortex meters require a fully developed flow profile as a prerequisite for correct volume flow measurement. Therefore, please note the following:


	Orientation	Recomme	endation	
			Compact version	Remote version
A	Vertical orientation (liquids)	A0015591	√ √ ¹⁾	<i>√ √</i>
В	Horizontal orientation, transmitter head up	A0015589	✓ ✓ ^{2) 3)}	~ ~
С	Horizontal orientation, transmitter head down	A0015590	√ √ ^{4) 5)}	J J
D	Horizontal orientation, transmitter head at side	A0015592	√ √ 4)	√ √

1) In the case of liquids, there should be upward flow in vertical pipes to avoid partial pipe filling (Fig. A). Disruption in flow measurement!

2) Danger of electronics overheating! If the fluid temperature is ≥ 200 °C (392 °F), orientation B is not permitted for the wafer version (Prowirl D) with nominal diameters of DN 100 (4") and DN 150 (6").

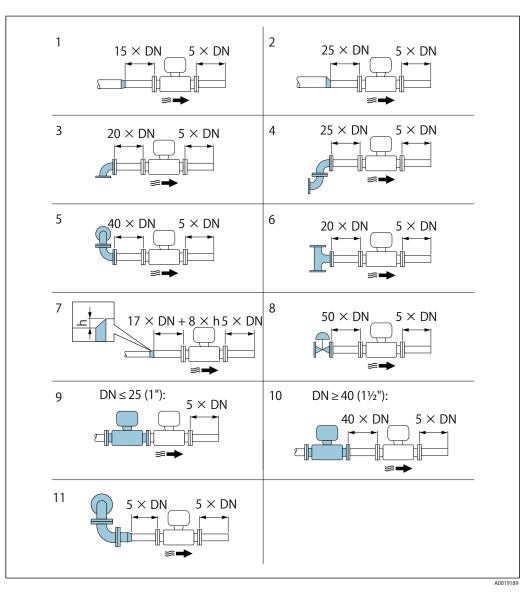

- 3) In the case of hot media (e.g. steam or fluid temperature (TM) \ge 200 °C (392 °F): orientation C or D
- 4) In the case of very cold media (e.g. liquid nitrogen): orientation B or D
- 5) For "Wet steam detection/measurement" option: orientation C

Pressure measuring cell

1) Note max. permitted ambient temperature of transmitter \rightarrow See page 35.

Minimum spacing and cable length

Minimum spacing in all directions Required cable length А


L

The following dimensions must be observed to guarantee problem-free access to the device for service purposes: • A =100 mm (3.94 in)

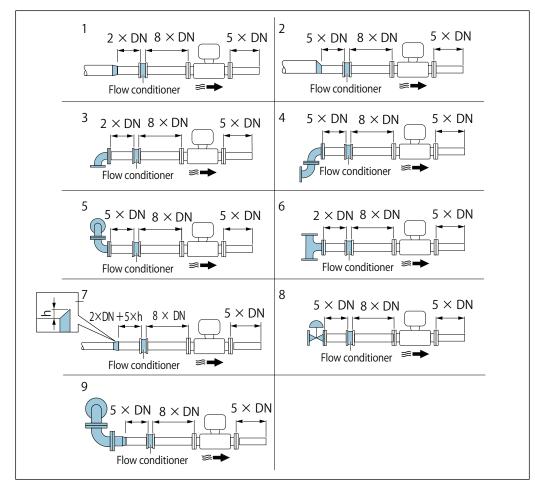
• L = L + 150 mm (5.91 in)

Inlet and outlet runs

To attain the specified level of accuracy of the measuring device, the inlet and outlet runs mentioned below must be maintained at the very minimum.

Minimum inlet and outlet runs with various flow obstructions (DN: Pipe diameter)

- h Difference in expansion
- 1 Concentric reducer
- 2 Eccentric reducer
- 3 Single elbow (90° elbow)
- 4 Double elbow (2 \times 90° elbows, opposite, on one plane)
- 5 Double elbow 3D (2 \times 90° elbows, opposite, not on one plane)
- 6 T-piece
- 7 Expansion
- 8 Control valve
- 9 Two measuring devices in a row where $DN \le 25$ (1"): directly flange on flange
- 10 Two measuring devices in a row where $DN \ge 40 (1\frac{1}{2})$: for spacing, see graphic
- 11 Combination pipe (Double elbow 3D ($2 \times 90^{\circ}$ elbows, opposite, not on one lane) + reducer, etc.)



- If there are several flow disturbances present, the longest specified inlet run must be maintained.
- If the required inlet runs cannot be observed, it is possible to install a specially designed flow conditioner.

Flow conditioner

If the inlet runs cannot be observed, the use of a flow conditioner is recommended.

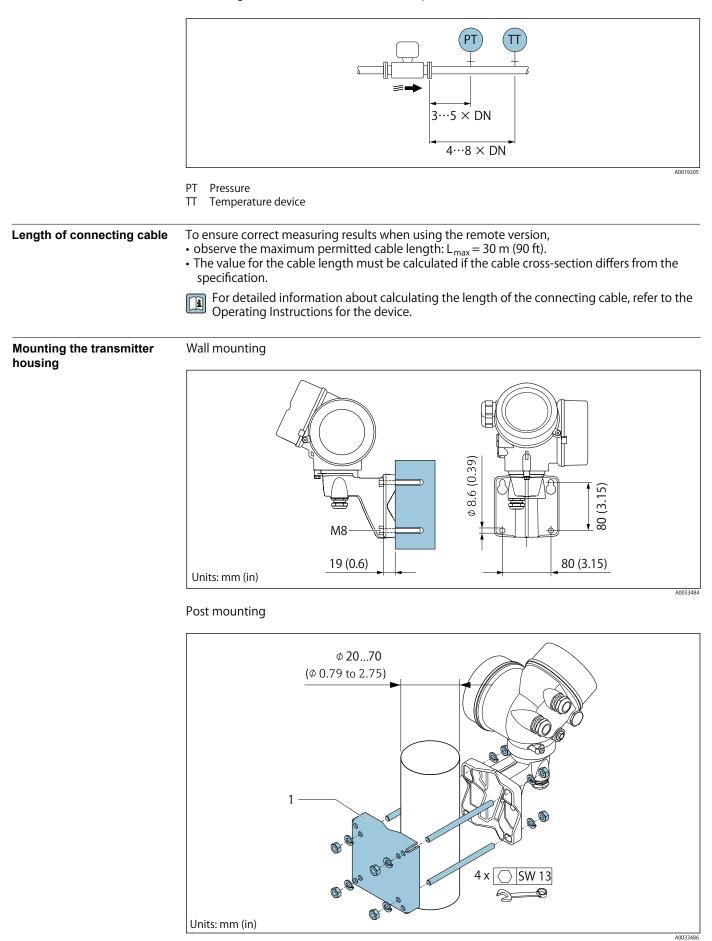
The flow conditioner is fitted between two pipe flanges and centered by the mounting bolts. Generally this reduces the inlet run needed to $10 \times DN$ or $13 \times DN$ with full accuracy.

Minimum inlet and outlet runs with various flow obstructions (DN: Pipe diameter)

- 1 Concentric reducer
- 2 Eccentric reducer
- 3 Single elbow (90° elbow)
- 4 Double elbow (2 \times 90° elbows, on one plane)
- 5 Double elbow 3D (2 \times 90° elbows, not on one plane)
- 6 T-piece
- 7 Expansion
- 8 Control valve
- 9 Combination pipe (Double elbow 3D ($2 \times 90^{\circ}$ elbows, opposite, not on one lane) + reducer, etc.)

The pressure loss for flow conditioners is calculated as follows: $\Delta p \text{ [mbar]} = 0.0085 \cdot \rho \text{ [kg/m^3]} \cdot v^2 \text{ [m/s]}$

Example for steam	Example for H_2O condensate (80 °C)
p = 10 bar abs.	$ ho = 965 \text{kg/m}^3$
t = 240 °C $\rightarrow \rho$ = 4.39 kg/m ³	v = 2.5 m/s
v = 40 m/s	$\Delta p = 0.0085 \cdot 965 \cdot 2.5^2 = 51.3 \text{ mbar}$
$\Delta p = 0.0085 \cdot 4.394.39 \cdot 40^2 = 59.7 \text{ mbar}$	


 ρ : density of the process medium v: average flow velocity abs. = absolute

-

Refer to the Mechanical construction setion for dimensions of the flow conditioner.

Outlet runs when installing external devices

If installing an external device, observe the specified distance.

Ambient temperature range	Compact version				
	Measuring device		-40 to +80 °C (-40 to +176 °F)		
	Local display		-40 to +70 °C (-40 to +158 °F) ¹⁾		
	 At temperatures < -20 °C (-4 °F), depending on the physical characteristics involved, it may no longer be possible to read the liquid crystal display. Remote version 				
	Transmitter	-40 to +80 °C (-40 to +176 °F)			
	Sensor	–40 to +85 °C (–40 to +185 °F)			
	Local display	-40 to +70 °C (-40 to +158 °F) ¹⁾			
	 At temperatures < -20 °C (-4 °F), depending on the physical characteristics involved, it may no longer be possible to read the liquid crystal display. 				
		unlight, particularly in warm clima	5		
	You can order a weather protection cover from TLV.				
Storage temperature	All components a -50 to +80 °C (-58	part from the display modules: to +176 °F)			
Climate class	DIN EN 60068-2-3	8 (test Z/AD)			
Degree of protection	When housing is	6/67, type 4X enclosure s open: IP20, type 1 enclosure IP20, type 1 enclosure			
	Sensor IP66/67, type 4X enclosure				
	Connector IP67, only in screw	ved situation			
Vibration- and shock- resistance	Vibration sinusoidal, according to IEC 60068-2-6 • 2 to 8.4 Hz, 7.5 mm peak • 8.4 to 500 Hz, 2 g peak				
	Vibration broad-band random, according to IEC 60068-2-64 • 10 to 200 Hz, 0.01 g ² /Hz • 200 to 500 Hz, 0.003 g ² /Hz • Total: 1.67 g rms				
	Shock half-sine, according to IEC 60068-2-27				
	6 ms 50 g				
	Rough handling sh	ocks according to IEC 60068-2-3	I		
Electromagnetic	As per IEC/EN 613	26 and NAMUR Recommendatior	21 (NE 21)		
compatibility (EMC)	Details are pr	ovided in the Declaration of Conf	formity.		

Environment

Process

Medium temperature range DSC sensor¹⁾

Description	Medium temperature ranges
Mass; 316L; 316L	-200 to +400 °C (-328 to +752 °F), stainless steel
Mass steam; 316L; 316L	-200 to +400 °C (-328 to +752 °F), stainless steel ^{2) 3)}

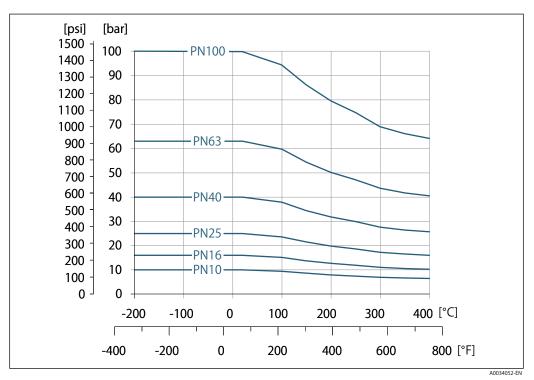
1) Capacitance sensor

2) Siphon enables use for extended temperature range (up to +400 °C (+752 °F)).

3) In steam applications, in conjunction with the siphon, the steam temperature may be higher (up to +400 °C (+752 °F)) than the permitted temperature of the pressure measuring cell. Without a siphon, the gas temperature is restricted due to the maximum permitted temperature of the pressure measuring cell. This applies regardless of whether or not a stop cock is present.

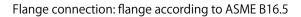
Pressure measuring cell

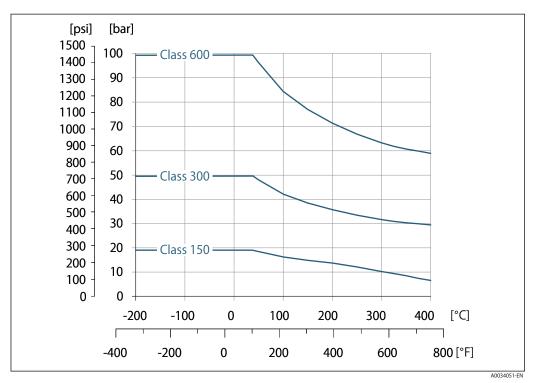
Description	Medium temperature range
Pressure measuring cell 40 bar/580 psi abs Pressure measuring cell 100 bar/1450 psi abs	-40 to +100 °C (-40 to +212 °F)

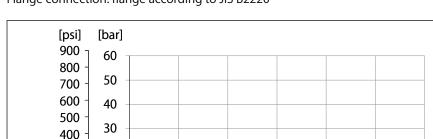

Seals

Description	Medium temperature range
Graphite (standard)	-200 to +400 °C (-328 to +752 °F)

Pressure-temperature
ratingsThe following pressure/temperature diagrams apply to all pressure-bearing parts of the device and
not just the process connection. The diagrams show the maximum permissible medium pressure
depending on the specific medium temperature.The pressure-temperature rating for the specific measuring device is programmed into the software.
If values exceed the curve range a warning is displayed. Depending on the system configuration and
sensor version, the pressure and temperature are determined by entering, reading in or calculating
values.




Integral mass vortex: The permitted pressure for the measuring device can be less than indicated in this section, depending on the selected pressure measuring cell.→ See page 39


Flange connection: flange according to EN 1092-1 (DIN 2501)

Flange connection material: stainless steel, multiple certifications, 1.4404/F316/F316L

Flange connection material: stainless steel, multiple certifications, 1.4404/F316/F316L

20K

10K

0

100

200

200

400

300

600

400

[°C]

A0034043-EN

800 [°F]

-100

-200

Flange connection: flange according to JIS B2220

300

200

100

0

20

10

0

-400

-200

Flange connection material: stainless steel, multiple certifications, 1.4404/F316/F316L

0

Nominal pressure of sensor The following overpressure resistance values apply to the sensor shaft in the event of a membrane rupture:

Sensor version; DSC sensor; measuring tube	Overpressure, sensor shaft in [bar a]
Mass (integrated temperature measurement)	200
Mass steam (integrated pressure/temperature measurement)	200

Pressure specifications

The OPL (over pressure limit = sensor overload limit) for the measuring device depends on the lowest-rated element, with regard to pressure, of the selected components, i.e. the process connection has to be taken into consideration in addition to the measuring cell. Also observe pressure-temperature dependency. For the appropriate standards and further information \rightarrow See page 26. The OPL may only be applied for a limited period of time.

The MWP (maximum working pressure) for the sensors depends on the lowest-rated element, with regard to pressure, of the selected components, i.e. the process connection has to be taken into consideration in addition to the measuring cell. Also observe pressure-temperature dependency. For the appropriate standards and further information \rightarrow See page 26. The MWP may be applied at the devicefor an unlimited period. The MWP can also be found on the nameplate.

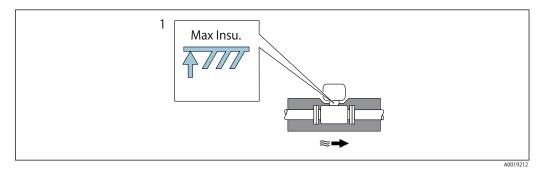
The maximum pressure for the measuring device depends on the lowest-rated element with regard to pressure.

- ▶ Note specifications regarding pressure range \rightarrow See 41.
- The Pressure Equipment Directive (2014/68/EU) uses the abbreviation "PS". The abbreviation "PS" corresponds to the MWP of the device.
- MWP: The MWP is indicated on the nameplate. This value refers to a reference temperature of +20 °C (+68 °F) and may be applied to the device for an unlimited time. Note temperature dependence of MWP.
- ► OPL: The test pressure corresponds to the over pressure limit of the sensor and may be applied only temporarily to ensure that the measurement is within the specifications and no permanent damage occurs. In the case of sensor range and process connection combinations where the OPL of the process connection is less than the nominal value of the sensor, the device is set at the factory, at the very maximum, to the OPL value of the process connection. If using the entire sensor range, select a process connection with a higher OPL value.

Sensor	Maximum sensor mea	asuring range	MWP	OPL
	Lower (LRL) Upper (URL)			
	[bar (psi)] [bar (psi)] [k		[bar (psi)]	[bar (psi)]
40 bar (600 psi)	0 (0)	+40 (+600)	100 (1 500)	160 (2 400)
100 bar (1 500 psi)	0 (0)	+100 (+1500)	100 (1 500)	160 (2 400)

Pressure loss

Consult TLV for a precise calculation.


Thermal insulation

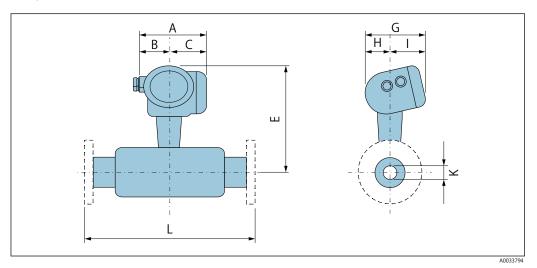
For optimum temperature measurement and mass calculation, heat transfer at the sensor must be avoided for some fluids. This can be ensured by installing thermal insulation. A wide range of materials can be used for the required insulation.

This applies for:

- Compact version
- Remote sensor version

The maximum insulation height permitted is illustrated in the diagram:

1 Maximum insulation height

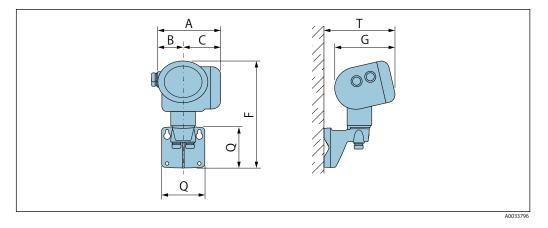

▶ When insulating, ensure that a sufficiently large area of the housing support remains exposed. The uncovered part serves as a radiator and protects the electronics from overheating and excessive cooling.

Mechanical construction

Dimensions in SI units

Pay attention to the information on diameter mismatch correction \rightarrow See 42.

Compact version

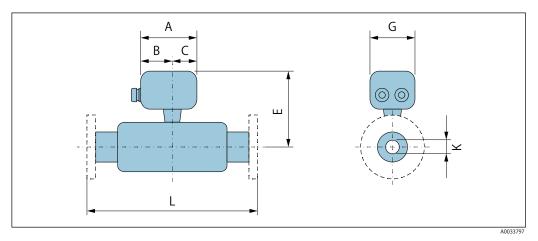

Grayed out: Dualsens version

DN	A ¹⁾	В	C ¹⁾	E ²⁾	G	Н	³⁾	K (D _i)	L
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
15	140.2	51.7	88.5	252	159.9	58.2	101.7	13.9	4)
25	140.2	51.7	88.5	258	159.9	58.2	101.7	24.3	4)
40	140.2	51.7	88.5	266	159.9	58.2	101.7	38.1	4)
50	140.2	51.7	88.5	272	159.9	58.2	101.7	49.2	4)
80	140.2	51.7	88.5	286	159.9	58.2	101.7	73.7	4)
100	140.2	51.7	88.5	300	159.9	58.2	101.7	97.0	4)
150	140.2	51.7	88.5	325	159.9	58.2	101.7	146.3	4)
200	140.2	51.7	88.5	348	159.9	58.2	101.7	193.7	4)
250	140.2	51.7	88.5	375	159.9	58.2	101.7	242.8	4)
300	140.2	51.7	88.5	397	159.9	58.2	101.7	288.9	4)

For version with overvoltage protection: values + 8 mm For version without local display: values - 10 mm For version without local display: values - 7 mm 1)

1) 2) 3) 4) Dependent on respective flange connectionX

Transmitter remote version

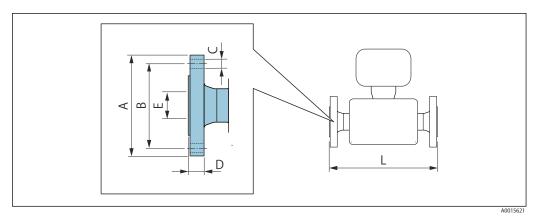


A ¹⁾	В	C ¹⁾	F ²⁾	G ³⁾	Q	T ³⁾
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
140.2	51.7	88.5	254	159.9	107	191

For version with overvoltage protection: value + 8 mm For version without local display: value - 10 mm For version without local display: value - 7 mm 1)

2) 3)

Sensor remote version


Grayed out: Dualsens version

DN	А	В	С	E ¹⁾	G	K (D _i)	L
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
15	107.3	60.0	47.3	225	94.5	13.9	2)
25	107.3	60.0	47.3	231	94.5	24.3	2)
40	107.3	60.0	47.3	239	94.5	38.1	2)
50	107.3	60.0	47.3	245	94.5	49.2	2)
80	107.3	60.0	47.3	259	94.5	73.7	2)
100	107.3	60.0	47.3	273	94.5	97.0	2)
150	107.3	60.0	47.3	298	94.5	146.3	2)
200	107.3	60.0	47.3	321	94.5	193.7	2)
250	107.3	60.0	47.3	348	94.5	242.8	2)
300	107.3	60.0	47.3	370	94.5	288.9	2)

For high-temperature/low-temperature version: values +29 mm Dependent on respective flange connection 1) 2)

Flange connections

Flange

Length tolerance for dimension L in mm: DN \leq 100: +1.5 to -2.0 mm i $DN \ge 150: \pm 3.5 \text{ mm}$

Flange connection dimensions according to DIN EN 1092-1: PN 10 Triple-certified material, 1.4404/F316/F316L								
DN A B C D E L ¹⁾ [mm] [mm] [mm] [mm] [mm] [mm]								
200	340	295	8 × Ø22	24	193.7	251		
250	395	350	12 × Ø22	26	242.8	282		
300 445 400 12 × Ø22 26 288.9 328								
Raised face ac	cording to DIN	EN 1092-1 For	m B1: Ra 3.2 to 12.5	μm				

1) Version compliant with ISO 13359 available on request: for DN 200: 350 mm; for DN 250: 450 mm; for DN 300: 500 mm

	Flange connection d	imensions according to	DIN EN	1092-1: PN 16
1				

•	Triple-certified	material,	1.4404/F316/F316L
---	------------------	-----------	-------------------

• Alloy C22/2.4602 (DN 15 to 150)

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L ^{1) 2)} [mm]
100	220	180	$8 \times Ø18$	20	97.0	250
150	285	240	$8 \times Ø22$	22	146.3	300
200	340	295	12 × Ø22	24	193.7	251
250	405	355	12 × Ø26	26	242.8	286
300	460	410	12 × Ø26	28	288.9	348
Raised face ac	cording to DIN	EN 1092-1 For	m B1: Ra 3.2 to 12.5	μm		

1)

Compliant with ISO 13359 for DN 100 to 150 Version compliant with ISO 13359 available on request: for DN 200: 350 mm; for DN 250: 450 mm; for DN 300: 500 mm 2)

Flange connection dimensions according to DIN EN 1092-1: PN 25

- Triple-certified material, 1.4404/F316/F316L
- Alloy C22/2.4602 (DN 15 to 150)

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L ¹⁾ [mm]
200	360	310	12 × Ø26	30	193.7	287
250	425	370	12 × Ø30	32	242.8	322
300	485	430	16 × Ø30	34	288.9	376
Raised face ac	cording to DIN	EN 1092-1 For	m B1: Ra 3.2 to 12.5	μm		

1) Version compliant with ISO 13359 available on request: for DN 200: 350 mm; for DN 250: 450 mm; for DN 300: 500 mm

Flange connection dimensions according to DIN EN 1092-1: PN 40

• Triple-certified material, 1.4404/F316/F316L

• Alloy C22/2.4602 (DN 15 to 150)

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L ^{1) 2)} [mm]			
15	95	65	$4 \times Ø14$	16	13.9	200			
25	115	85	$4 \times Ø14$	18	24.3	200			
40	150	110	$4 \times Ø18$	18	38.1	200			
50	165	125	$4 \times Ø18$	20	49.2	200			
80	200	160	$8 \times Ø18$	24	73.7	200			
100	235	190	8 × Ø22	24	97	250			
150	300	250	8 × Ø26	28	146.3	300			
200	375	320	12 × Ø30	34	193.7	303			
250	450	385	12 × Ø33	38	242.8	356			
300	515	450	16 × Ø33	42	288.9	422			
Raised face ac	cording to DIN	I EN 1092-1 For	m B1: Ra 3.2 to 12.5	μm					

1) Compliant with ISO 13359 for DN 15 to 150

 Version compliant with ISO 13359 available on request: for DN 200: 350 mm; for DN 250: 450 mm; for DN 300: 500 mm

 Flange connection dimensions as per DIN EN 1092-1: PN 40 with groove Triple-certified material, 1.4404/F316/F316L Alloy C22/2.4602 (DN 15 to 150) 									
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L ^{1) 2)} [mm]			
15	95	65	4 × Ø14	16	13.9	200			
25	115	85	4 × Ø14	18	24.3	200			
40	150	110	4 × Ø18	18	38.1	200			
50	165	125	4 × Ø18	20	49.2	200			
80	80 200 160 8ר18 24 73.7 200								
100	235	190	8 × Ø22	24	97	250			

Flange connection dimensions as per DIN EN 1092-1: PN 40 with groove

- Triple-certified material, 1.4404/F316/F316L
- Alloy C22/2.4602 (DN 15 to 150)

	-	-				
DN	A	В	С	D	E	L ^{1) 2)}
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
150	300	250	$8 \times Ø26$	28	146.3	300
Raised face according to DIN EN 1092-1 Form B1: Ra 3.2 to 12.5 µm						

1)

Compliant with ISO 13359 for DN 15 to 150 Version compliant with ISO 13359 available on request: for DN 200: 350 mm; for DN 250: 450 mm; for 2) DN 300: 500 mm

Flange connection dimensions according to DIN EN 1092-1: PN 63 Triple-certified material, 1.4404/F316/F316L							
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]	
50	180	135	4 × Ø22	26	49.2	222	
80	215	170	8 × Ø22	28	73.7	228	
100	250	200	8 × Ø26	30	97	268	
150	345	280	8 × Ø33	36	146.3	316	
200	415	345	12 × Ø36	42	193.7	347	
250	470	400	12 × Ø36	46	242.8	396	
300	530	460	16 × Ø36	52	288.9	472	
Raised face ac	Raised face according to DIN EN 1092-1 Form B1: Ra 3.2 to 12.5 µm						

Flange connection dimensions according to DIN EN 1092-1: PN 100 Triple-certified material, 1.4404/F316/F316L								
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]		
25	140	100	$4 \times Ø18$	24	24.3	230		
40	170	125	4 × Ø22	26	38.1	204		
50	195	145	$4 \times Ø26$	28	49.2	234		
80	230	180	$8 \times Ø26$	32	73.7	240		
100	265	210	$8 \times Ø30$	36	97	292		
150	355	290	12 × Ø33	44	146.3	356		
200	430	360	12 × Ø36	52	193.7	387		
250	505	430	12 × Ø39	60	242.8	460		
300	585	500	16 × Ø42	68	288.9	532		
Raised face ac	Raised face according to DIN EN 1092-1 Form B1: Ra 3.2 to 12.5 μm							

Flange connection dimensions according to ASME B16.5: Class 150, Schedule 40/80

• Triple-certified material, 1.4404/F316/F316L

• Alloy C22/2.4602 (DN 15 to 150)

		,							
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]			
15	88.9	60.5	4 × Ø15.7	11.2	13.9	200			
25	107.9	79.2	4 × Ø15.7	15.7	24.3	200			
40	127.0	98.6	4 × Ø15.7	17.5	38.1	200			
50	152.4	120.7	4 × Ø19.1	19.1	49.2	200			
80	190.5	152.4	4 × Ø19.1	23.9	73.7	200			
100	228.6	190.5	8 × Ø19.1	24.5	97	250			
150	279.4	241.3	8 × Ø22.4	25.4	146.3	300			
200	345	298.5	8 × Ø22.3	29	193.7	329			
250	405	362	12 × Ø25.4	30.6	242.8	348			
300	485	431.8	12 × Ø25.4	32.2	288.9	418			
Raised face a	ccording to ASI	ME B16.5: Ra 3.	2 to 6.3 μm	1	1	1			

Flange connection dimensions according to ASME B16.5: Class 300, Schedule 40/80

Triple-certified material, 1.4404/F316/F316L
Alloy C22/2.4602 (DN 15 to 150)

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]		
15	95.0	66.5	4 × Ø15.7	14.2	13.9	200		
25	123.8	88.9	4 × Ø19.1	19.1	24.3	200		
40	155.6	114.3	4 × Ø22.4	20.6	38.1	200		
50	165.0	127.0	8 × Ø19.1	22.4	49.2	200		
80	210.0	168.1	8 × Ø22.4	28.4	73.7	200		
100	254.0	200.2	8 × Ø22.4	31.8	97	250		
150	317.5	269.7	12 × Ø22.4	36.6	146.3	300		
200	380	330.2	12 × Ø25.4	41.7	193.7	350		
250	445	387.4	16 × Ø28.6	48.1	242.8	380		
300	520	450.8	16 × Ø31.8	51.3	288.9	450		
Raised face ad	Raised face according to ASME B16.5: Ra 3.2 to 6.3 µm							

Flange connection dimensions according to ASME B16.5: Class 600, Schedule 80 Triple-certified material, 1.4404/F316/F316L									
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]			
15	95	66.5	4 × Ø15.7	23	13.9	207			
25	125	88.9	4 × Ø19.1	27	24.3	252			
40	155	114.3	4 × Ø22.4	31	38.1	234			
50	165	127.0	8 × Ø19.1	33	49.2	257			
80	210	168.1	8 × Ø22.4	39	73.7	265			

514

	lange connection dimensions according to ASME B16.5: Class 600, Schedule 80 riple-certified material, 1.4404/F316/F316L								
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]			
100	275	215.9	$8 \times Ø25.4$	49	97	331			
150	355	292.1	12 × Ø28.4	64	146.3	375			
200	420	349.2	12 × Ø31.8	62.6	193.7	405			
250	510	431.8	12 × Ø35	70.5	242.8	462			

16 × Ø35

73.7

288.9

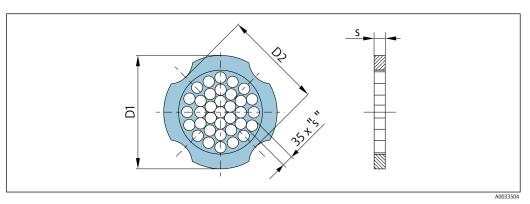
Raised face according to ASME B16.5: Ra 3.2 to 6.3 μm

560

300

Flange connection dimensions according to JIS B2220: 10K, Schedule 40/80 Triple-certified material, 1.4404/F316/F316L

489


DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]	
50	155	120	4 × Ø19	16	49.2	200	
80	185	150	$8 \times Ø19$	18	73.7	200	
100	210	175	8 × Ø19	18	97	250	
150	280	240	8 × Ø23	22	146.3	300	
200	330	290	12 × Ø23	22	193.7	247	
250	400	355	12 × Ø25	24	242.8	280	
300	445	400	16 × Ø25	24	288.9	334	
Raised face ac	Raised face according to JIS 2220: Ra 3.2 to 6.3 µm						

Flange connection dimensions according to JIS B2220: 20K, Schedule 40/80
Triple-certified material, 1.4404/F316/F316L

Inple-certified material, 1.4404/F310/F310L							
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]	
15	95	70	4 × Ø15	14	13.9	200	
25	125	90	4 × Ø19	16	24.3	200	
40	140	105	4 × Ø19	18	38.1	200	
50	155	120	$8 \times Ø19$	18	49.2	200	
80	200	160	8 × Ø23	22	73.7	200	
100	225	185	8 × Ø23	24	97	250	
150	305	260	12 × Ø25	28	146.3	300	
200	350	305	12 × Ø25	30	193.7	285	
250	430	380	12 × Ø27	34	242.8	324	
300	480	430	16 × Ø27	36	288.9	386	
Raised face ac	Raised face according to JIS 2220: Ra 3.2 to 6.3 µm						

Accessories

Flow conditioner

Used in combination with flanges according to DIN EN 1092-1: PN 10

1.4404 (316, 316L)			
DN [mm]	Centering diameter [mm]	D1 ¹⁾ / D2 ²⁾	s [mm]
15	54.3	D2	2.0
25	74.3	D1	3.5
40	95.3	D1	5.3
50	110.0	D2	6.8
80	145.3	D2	10.1
100	165.3	D2	13.3
150	221.0	D2	20.0
200	274.0	D1	26.3
250	330.0	D2	33.0
300	380.0	D2	39.6

1) 2) The flow conditioner is fitted at the outer diameter between the bolts. The flow conditioner is fitted at the indentations between the bolts.

Used in combination with flanges according to DIN EN 1092-1: PN 16 1.4404 (316, 316L)									
DN [mm]	Centering diameter [mm]	D1 ¹⁾ / D2 ²⁾	s [mm]						
15	54.3	D2	2.0						
25	74.3	D1	3.5						
40	95.3	D1	5.3						
50	110.0	D2	6.8						
80	145.3	D2	10.1						
100	165.3	D2	13.3						
150	221.0	D2	20.0						
200	274.0	D2	26.3						

Used in combination with flanges according to DIN EN 1092-1: PN 16 1.4404 (316, 316L)					
DN Centering diameter D1 ¹⁾ / D2 ²⁾ s [mm]					
250	330.0	D2	33.0		
300	380.0	D2	39.6		

The flow conditioner is fitted at the outer diameter between the bolts. 1)

2) The flow conditioner is fitted at the indentations between the bolts.

Used in combination with flanges according to DIN EN 1092-1: PN 25 1.4404 (316, 316L)						
DN [mm]	Centering diameter [mm]					
15	54.3	D2	2.0			
25	74.3	D1	3.5			
40	95.3	D1	5.3			
50	110.0	D2	6.8			
80	145.3	D2	10.1			
100	171.3	D1	13.3			
150	227.0	D2	20.0			
200	280.0	D1	26.3			
250	340.0	D1	33.0			
300	404.0	D1	39.6			

Used in combination with flanges according to DIN EN 1002-1: PN 25

1) 2) The flow conditioner is fitted at the outer diameter between the bolts.

The flow conditioner is fitted at the indentations between the bolts.

Used in combination with flanges according to DIN EN 1092-1: PN 40 1.4404 (316, 316L)						
DN [mm]	Centering diameter [mm]					
15	54.3	D2	2.0			
25	74.3	D1	3.5			
40	95.3	D1	5.3			
50	110.0	D2	6.8			
80	145.3	D2	10.1			
100	171.3	D1	13.3			
150	227.0	D2	20.0			
200	294.0	D2	26.3			
250	355.0	D2	33.0			
300	420.0	D1	39.6			

The flow conditioner is fitted at the outer diameter between the bolts. 1)

2) The flow conditioner is fitted at the indentations between the bolts.

Used in combinati 1.4404 (316, 316L)	on with flanges according to DIN EN 109.	2-1: PN 63	
DN [mm]	Centering diameter [mm]	D1 ¹⁾ / D2 ²⁾	s [mm]
15	64.3	D1	2.0
25	85.3	D1	3.5
40	106.3	D1	5.3
50	116.3	D1	6.8
80	151.3	D1	10.1
100	176.5	D2	13.3
150	252.0	D1	20.0

1) The flow conditioner is fitted at the outer diameter between the bolts.

2) The flow conditioner is fitted at the indentations between the bolts.

Used in combination with flanges according to ASME B16.5: Class 150 1.4404 (316, 316L)						
DN [mm]	Centering diameter [mm]	s [mm]				
15	50.1	D1	2.0			
25	69.2	D2	3.5			
40	88.2	D2	5.3			
50	106.6	D2	6.8			
80	138.4	D1	10.1			
100	176.5	D2	13.3			
150	223.5	D1	20.0			
200	274.0	D2	26.3			
250	340.0	D1	33.0			
300	404.0	D1	39.6			

The flow conditioner is fitted at the outer diameter between the bolts. 1)

2) The flow conditioner is fitted at the indentations between the bolts.

Used in combination with flanges according to ASME B16.5: Class 300 1.4404 (316, 316L)						
DN [mm]	Centering diameter D1 ¹⁾ / D2 ²⁾ [mm]					
15	56.5	D1	2.0			
25	74.3	D1	3.5			
40	97.7	D2	5.3			
50	113.0	D1	6.8			
80	151.3	D1	10.1			
100	182.6	D1	13.3			
150	252.0	D1	20.0			
200	309.0	D1	26.3			

Used in combination with flanges according to ASME B16.5: Class 300 1.4404 (316, 316L)						
DN Centering diameter D1 ¹⁾ / D2 ²⁾ s [mm] [mm]						
250	363.0	D1	33.0			
300	402.0	D1	39.6			

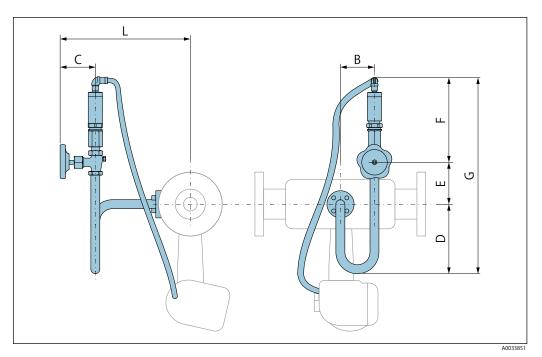
1) The flow conditioner is fitted at the outer diameter between the bolts.

2) The flow conditioner is fitted at the indentations between the bolts.

Used in combination with flanges according to JIS B2220: 10K 1.4404 (316, 316L)						
DN [mm]	Centering diameter [mm]					
15	60.3	D2	2.0			
25	76.3	D2	3.5			
40	91.3	D2	5.3			
50	106.6	D2	6.8			
80	136.3	D2	10.1			
100	161.3	D2	13.3			
150	221.0	D2	20.0			
200	271.0	D2	26.3			
250	330.0	D2	33.0			
300	380.0	D2	39.6			

1) The flow conditioner is fitted at the outer diameter between the bolts.

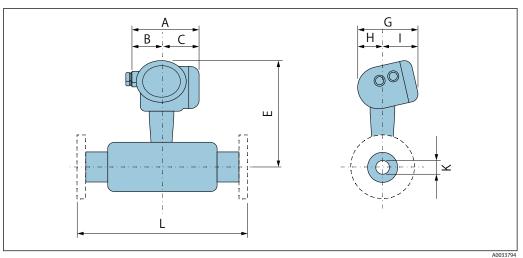
2) The flow conditioner is fitted at the indentations between the bolts.


Used in combination with flanges according to JIS B2220: 20K 1.4404 (316, 316L)						
DN [mm]	Centering diameter [mm]					
15	60.3	D2	2.0			
25	76.3	D2	3.5			
40	91.3	D2	5.3			
50	106.6	D2	6.8			
80	142.3	D1	10.1			
100	167.3	D1	13.3			
150	240.0	D1	20.0			
200	284.0	D1	26.3			
250	355.0	D2	33.0			
300	404.0	D1	39.6			

1) The flow conditioner is fitted at the outer diameter between the bolts.

2) The flow conditioner is fitted at the indentations between the bolts.

Pressure measuring cell

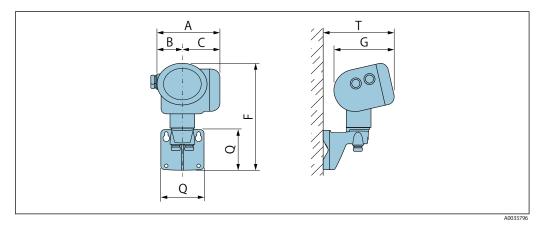

- For order code for "Sensor version; DSC sensor; measuring tube" and option "Mass steam", the following applies: Only available for measuring devices with the HART communication protocol Oil-free or grease-free cleaning is not possible H

Order code for "Sensor version; DSC sensor; measuring tube": Option DA "Mass steam; 316L; 316L (integrated pressure/temperature measurement)"							
DN [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	L [mm]
25	76	78.8	155	60.8	190.5	407	307
40	76	78.8	155	60.8	190.5	407	314
50	76	78.8	155	60.8	190.5	407	320
80	76	78.8	155	60.8	190.5	407	331
100	76	78.8	155	60.8	190.5	407	346
150	76	78.8	155	60.8	190.5	407	372
200	76	78.8	155	60.8	190.5	407	395
250	76	78.8	155	60.8	190.5	407	423
300	76	78.8	155	60.8	190.5	407	449

Dimensions in US units

Compact version

Grayed out: Dualsens version

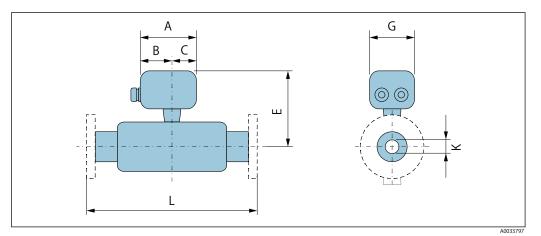

DN	A ¹⁾ 0.31 in	В	C ¹⁾	E ^{2) 3)}	G	Н	⁴⁾	K (D _i)	L
[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]
1/2	5.52	2.04	3.48	9.92	6.3	2.29	4	0.55	5)
1	5.52	2.04	3.48	10.2	6.3	2.29	4	0.96	5)
11/2	5.52	2.04	3.48	10.5	6.3	2.29	4	1.5	5)
2	5.52	2.04	3.48	10.7	6.3	2.29	4	1.94	5)
3	5.52	2.04	3.48	11.3	6.3	2.29	4	2.9	5)
4	5.52	2.04	3.48	11.8	6.3	2.29	4	3.82	5)
6	5.52	2.04	3.48	12.8	6.3	2.29	4	5.76	5)
8	5.52	2.04	3.48	13.7	6.3	2.29	4	7.63	5)
10	5.52	2.04	3.48	14.8	6.3	2.29	4	9.56	5)
12	5.52	2.04	3.48	15.6	6.3	2.29	4	11.4	5)

1)

For version with overvoltage protection: values + 0.31 in For version without local display: values - 0.39 in For high-temperature/low-temperature version: values + 1.14 in For version without local display: values - 0.28 in Dependent on respective flange connection

2) 3) 4) 5)

Transmitter remote version



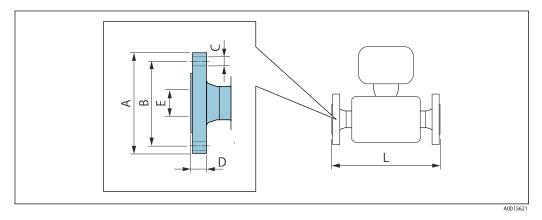
A ¹⁾	В	C ¹⁾	F	G ³⁾	Q	Т
[in]	[in]	[in]	[in]	[in]	[in]	[in]
5.52	2.04	3.48	10	6.3	4.21	7.52

1) For version with overvoltage protection: value + 0.31 in

Sensor remote version

Order code for "Housing", option J "GT20 two-chamber, aluminum, coated, remote"; option K "GT18 two-chamber, 316L, remote"

Grayed out: Dualsens version


DN	А	В	С	E ¹⁾	G	K (D _i)	L
[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]
1/2	4.22	2.36	1.86	8.86	3.72	0.55	2)
1	4.22	2.36	1.86	9.09	3.72	0.96	2)
11/2	4.22	2.36	1.86	9.41	3.72	1.5	2)
2	4.22	2.36	1.86	9.65	3.72	1.94	2)
3	4.22	2.36	1.86	10.2	3.72	2.9	2)
4	4.22	2.36	1.86	10.7	3.72	3.82	2)
6	4.22	2.36	1.86	11.7	3.72	5.76	2)

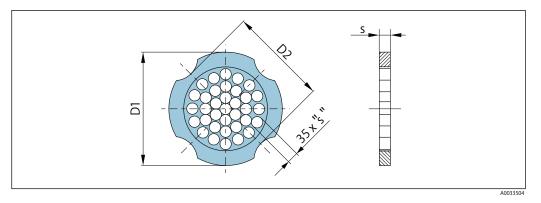
DN	А	В	С	E ¹⁾	G	K (D _i)	L
[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]
8	4.22	2.36	1.86	12.6	3.72	7.63	2)
10	4.22	2.36	1.86	13.7	3.72	9.56	2)
12	4.22	2.36	1.86	14.6	3.72	11.4	2)

1) 2) For high-temperature/low-temperature version: values +1.14 in Dependent on respective flange connection

Flange connections

Flange

Length tolerance for dimension L in inch: DN \leq 4": +0.06 to -0.08 in DN \geq 6": \pm 0.14 in i


DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]
1/2	3.5	2.38	4 × Ø0.62	0.44	0.55	7.87
1	4.25	3.12	4 × Ø0.62	0.62	0.96	7.87
1½	5	3.88	4 × Ø0.62	0.69	1.5	7.87
2	6	4.75	4 × Ø0.75	0.75	1.94	7.87
3	7.5	6	4 × Ø0.75	0.94	2.9	7.87
4	9	7.5	8 × Ø0.75	0.96	3.82	9.84
6	11	9.5	$8 imes \emptyset 0.88$	1	5.76	11.81
8	13.6	11.8	8 × Ø0.88	1.14	7.63	12.95
10	15.9	14.3	12 × Ø1	1.2	9.56	13.7
12	19.1	17	12 × Ø1	1.27	11.4	16.46

DN	А	В	С	D	E	L
[in]	[in]	[in]	[in]	[in]	[in]	[in]
1/2	3.74	2.62	4 × Ø0.62	0.56	0.55	7.87
1	4.87	3.5	4 × Ø0.75	0.75	0.96	7.87
1½	6.13	4.5	4 × Ø0.88	0.81	1.5	7.87
2	6.5	5	8 × Ø0.75	0.88	1.94	7.87
3	8.27	6.62	8 × Ø0.88	1.12	2.9	7.87
4	10	7.88	$8 imes \emptyset 0.88$	1.25	3.82	9.84
6	12.5	10.6	12 × Ø0.88	1.44	5.76	11.81
8	15	13	12 × Ø1	1.64	7.63	13.78
10	17.5	15.3	16 × Ø1.13	1.89	9.56	14.96
12	20.5	17.7	16 × Ø1.25	2.02	11.4	17.72

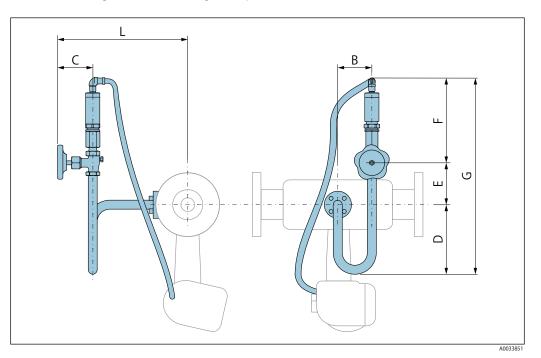
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]
1/2	3.74	2.62	4 × Ø0.62	0.91	0.55	8.15
1	4.92	3.5	4 × Ø0.75	1.06	0.96	9.92
11⁄2	6.1	4.5	$4 \times Ø0.88$	1.22	1.5	9.21
2	6.5	5	8 × Ø0.75	1.3	1.94	10.1
3	8.27	6.62	8 × Ø0.88	1.54	2.9	10.4
4	10.8	8.5	$8 \times Ø1$	1.93	3.82	13.0
6	14	11.5	12 × Ø1.12	2.52	5.76	14.8
8	16.5	13.7	12 × Ø1.25	2.46	7.63	15.9
10	20.1	17	12 × Ø1.38	2.78	9.56	18.2
12	22	19.3	16 × Ø1.38	2.90	11.4	20.2

Accessories

Flow conditioner

Used in combinat 1.4404 (316, 316L	tion with flanges according to ASME B16.5 .)	i: Class 150	
DN [in]	Centering diameter [in]	D1 ¹⁾ / D2 ²⁾	s [in]
1/2	1.97	D1	0.08
1	2.72	D2	0.14
11/2	3.47	D2	0.21
2	4.09	D2	0.27
3	5.45	D1	0.40
4	6.95	D2	0.52
6	8.81	D1	0.79
8	10.80	D2	1.04
10	13.40	D1	1.30
12	15.90	D1	1.56

The flow conditioner is fitted at the outer diameter between the bolts. 1)


2) The flow conditioner is fitted at the indentations between the bolts.

Used in combina 1.4404 (316, 316L	tion with flanges according to ASME B16.5 .)	5: Class 300	
DN [in]	Centering diameter [in]	D1 ¹⁾ / D2 ²⁾	s [in]
1/2	2.22	D1	0.08
1	2.93	D1	0.14
11/2	3.85	D2	0.21
2	4.45	D1	0.27
3	5.96	D1	0.40
4	7.19	D1	0.52
6	9.92	D1	0.79
8	12.20	D1	1.04
10	14.30	D1	1.30
12	15.80	D1	1.56

1) 2) The flow conditioner is fitted at the outer diameter between the bolts. The flow conditioner is fitted at the indentations between the bolts.

Pressure measuring cell

- For order code for "Sensor version; DSC sensor; measuring tube" and option "Mass steam", the following applies: Only available for measuring devices with the HART communication protocol Oil-free or grease-free cleaning is not possible H

Order code for "Sensor version; DSC sensor; measuring tube": Option "Mass steam; 316L; 316L (integrated pressure/temperature measurement)"							
DN [in]	B [in]	C [in]	D [in]	E [in]	F [in]	G [in]	L [in]
1	2.99	3.1	6.1	2.39	7.5	16.02	12.09
1½	2.99	3.1	6.1	2.39	7.5	16.02	12.36
2	2.99	3.1	6.1	2.39	7.5	16.02	12.6
3	2.99	3.1	6.1	2.39	7.5	16.02	13.03
4	2.99	3.1	6.1	2.39	7.5	16.02	13.62
6	2.99	3.1	6.1	2.39	7.5	16.02	14.65
8	2.99	3.1	6.1	2.39	7.5	16.02	15.55
10	2.99	3.1	6.1	2.39	7.5	16.02	16.65
12	2.99	3.1	6.1	2.39	7.5	16.02	17.68

59

Weight

Compact version

Weight data:

- Aluminum, coated, compact" 1.8 kg (4.0 lb):
- Excluding packaging material

Weight in SI units

All values (weight) refer to devices with EN (DIN), PN 40 flanges. Weight information in [kg].

DN [mm]	Weight [kg] Aluminum, coated, compact" ¹⁾
15	5.1
25	7.1
40	9.1
50	11.1
80	16.1
100	21.1
150	37.1
200	72.1
250	111.1
300	158.1

1) For high-temperature/low-temperature version: values + 0.2 kg

Weight in US units

All values (weight) refer to devices with ASME B16.5, Class 300/Sch. 40 flanges. Weight information in [lbs].

DN [in]	Weight [lbs] Aluminum, coated, compact" ¹⁾
1⁄2	11.3
1	15.7
1½	22.4
2	26.8
3	42.2
4	66.5
6	110.5
8	167.9
10	240.6
12	357.5

1) For high-temperature/low-temperature version: values + 0.4 lbs

[•] Including the transmitter:

Transmitter remote version

Wall-mount housing

Dependent on the material of wall-mount housing:

Sensor remote version

Weight data:

- Including sensor connection housing:
- Excluding the connecting cable
- Excluding packaging material

Weight in SI units

All values (weight) refer to devices with EN (DIN), PN 40 flanges. Weight information in [kg].

DN [mm]	Weight [kg] Aluminum, coated, remote" ¹⁾
15	4.1
25	6.1
40	8.1
50	10.1
80	15.1
100	20.1
150	36.1
200	71.1
250	110.1
300	157.1

1) For high-temperature/low-temperature version: values + 0.2 kg

Weight in US units

All values (weight) refer to devices with ASME B16.5, Class 300/Sch. 40 flanges. Weight information in [lbs].

DN [in]	Weight [lbs] Aluminum, coated, remote" ¹⁾
1⁄2	8.9
1	13.4
1½	20.0
2	24.4
3	39.8
4	64.1
6	108.2
8	165.5
10	238.2
12	355.1

1) For high-temperature/low-temperature version: values + 0.4 lbs

Accessories

Flow conditioner

Weight in SI units

DN ¹⁾ [mm]	Pressure rating	Weight [kg]
15	PN 10 to 40	0.04
25	PN 10 to 40	0.1
40	PN 10 to 40	0.3
50	PN 10 to 40	0.5
80	PN 10 to 40	1.4
100	PN10 to 40	2.4
150	PN 10/16 PN 25/40	6.3 7.8
200	PN 10 PN 16/25 PN 40	11.5 12.3 15.9
250	PN 10 to 25 25.7 PN 40 27.5	
300	PN10 to 25 36.4 PN 40 44.7	

1) EN (DIN)

DN ¹⁾ [mm]	Pressure rating	Weight [kg]		
15	Class 150 Class 300	0.03 0.04		
25	Class 150 Class 300	0.1		
40	Class 150 Class 300	0.3		
50	Class 150 Class 300	0.5		
80	Class 150 Class 300	1.2 1.4		
100	Class 150 Class 300	2.7		
150	Class 150 Class 300	6.3 7.8		
200	Class 150 Class 300	12.3 15.8		
250	Class 150 25.7 Class 300 27.5			
300	Class 150 36.4 Class 300 44.6			

1) ASME

DN ¹⁾ [mm]	Pressure rating	Weight [kg]
15	20К	0.06
25	20К	0.1
40	20К	0.3
50	10K 20K	0.5
80	10K 20K	1.1
100	10K 20K	1.80
150	10K 20K	4.5 5.5
200	10K 20K	9.2
250	10K 20K	15.8 19.1
300	10K 26.5 20K	

1) JIS

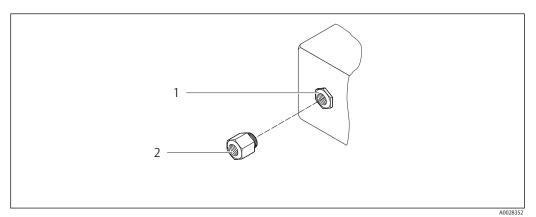
Weight in US units

DN ¹⁾ [in]	Pressure rating	Weight [lbs]		
1/2	Class 150 Class 300	0.07 0.09		
1	Class 150 Class 300	0.3		
11/2	Class 150 Class 300	0.7		
2	Class 150 Class 300	1.1		
3	Class 150 Class 300	2.6 3.1		
4	Class 150 6.0 Class 300			
6	Class 150 14.0 Class 300 16.0			
8	Class 150 27.0 Class 300 35.0			
10	Class 150 57.0 Class 300 61.0			
12	Class 150 Class 300	80.0 98.0		

1) ASME

Materials

Transmitter housing


Compact version

- Aluminum, coated, compact": Aluminum, AlSi10Mg, coated
- Window material: glass

Remote version

- Aluminum, coated, remote": Aluminum, AlSi10Mg, coated
- Window material: glass

Cable entries/cable glands

Possible cable entries/cable glands

- 1 Female thread M20 \times 1.5
- 2 Adapter for cable entry with female thread G $^{1\!\!/}_2$ or NPT $^{1\!\!/}_2$

Cable entry/cable gland	Type of protection	Material
Cable gland M20 $ imes$ 1.5	Adapter for cable entry with female thread G ½"	Nickel-plated brass

Connecting cable for remote version

• Standard cable: PVC cable with copper shield

Connecting cable, pressure measuring cell

Standard cable: PVC cable with copper shield

Sensor connection housing

 Aluminum, coated, remote": Coated aluminum AlSi10Mg Measuring tubes

DN 15 to 300 (½ to 12"), pressure ratings PN 10/16/25/40 /63/100, Class 150/300 /600 , as well as JIS 10K/20K:

Stainless cast steel, CF3M/1.4408

Compliant with:

- NACE MR0175
- NACE MR0103
- DN15 to 150 (1/2 to 6"): AD2000, permitted temperature range –10 to +400 $^\circ\,$ C (+14 to +752 $^\circ\,$ F) restricted)

DSC sensor

- Stainless steel 1.4404 and 316 and 316L
- Compliant with:
 - NACE MR0175/ISO 15156-2015
 - NACE MR0103/ISO 17945-2015

Parts not in contact with medium: Stainless steel 1.4301 (304)

Pressure measuring cell

- Wetted parts:
 - Process connection Stainless steel, 1.4404/316L
- Membrane
 - Stainless steel, 1.4435/316L
- Non-wetted parts: Housing Stainless steel ,1.4404
- Siphon⁴⁾
- Stainless steel ,1.4571
- Adjusting nut
- Stainless steel ,1.4571
- Pressure gauge valve Stainless steel ,1.4571
- Welded connection on meter body
- Stainless steel, multiple certifications 1.4404/316/316L
- Seals
 - Copper

Process connections

DN 15 to 300 (½ to 12"), pressure ratings PN 10/16/25/40/63/100, Class 150/300/600, as well as JIS 10K/20K:

Welding neck flanges DN 15 to 300 (½ to 12") Compliant with: NACE MR0175-2003 NACE MR0103-2003

The following materials are available depending on the pressure rating: • Stainless steel, multiple certifications, 1.4404/F316/F316L)

Available process connections→ See page 36

⁴⁾ Only with order code for "Sensor version; DSC sensor; measuring tube", option available.

	Seals
	 Graphite (standard) Sigraflex foil[™] (BAM-tested for oxygen applications, "high-grade in the context of TA-Luft Clear Air Guidelines") FPM (Viton [™]) Kalrez 6375 [™] Gylon 3504 [™] (BAM-tested for oxygen applications, "high-grade in the context of TA-Luft clean air guidelines")
	Order code for "Sensor version; DSC sensor; measuring tube", option, Copper
	Housing support
	Stainless steel, 1.4408 (CF3M)
	Screws for DSC sensor
	Stainless steel, A2-80 according to ISO 3506-1 (304)
	 Order code for "Additional approval", option LL "AD 2000 (including option JA+JB+JK) > DN25 including option LK" Stainless steel, A4-80 according to ISO 3506-1 (316)
	Accessories
	Protective cover
	Stainless steel, 1.4404 (316L)
	Flow conditioner
	 Stainless steel, multiple certifications, 1.4404 (316, 316L) Compliant with: NACE MR0175-2003 NACE MR0103-2003
Flange connections	 Flange connection dimensions and raised face in accordance with: DIN EN 1092-1 ASME B16.5 JIS B2220

For information on the different materials used in the flange connections \rightarrow See page 7

Operability

Operating concept	Operator-oriented menu structure for user-specific tasks Commissioning Operation Diagnostics
	 Expert level Quick and safe commissioning Guided menus ("Make-it-run" wizards) for applications Menu guidance with brief explanations of the individual parameter functions
	 Reliable operation Operation in the following languages: Via local display: English, German, French, Spanish, Italian, Dutch, Portuguese, Polish, Russian, Swedish, Turkish, Chinese, Japanese, Korean, Bahasa (Indonesian), Vietnamese, Czech
	 Uniform operating philosophy applied to device and operating tools If replacing the electronic module, transfer the device configuration via the integrated memory (integrated HistoROM) which contains the process and measuring device data and the event logbook. No need to reconfigure.
	Efficient diagnostics increase measurement availability • Troubleshooting measures can be called up via the device and in the operating tools • Diverse simulation options, logbook for events that occur and optional line recorder functions
Languages	Can be operated in the following languages: • Via local display: English, German, French, Spanish, Italian, Dutch, Portuguese, Polish, Russian, Swedish, Turkish, Chinese, Japanese, Korean, Bahasa (Indonesian), Vietnamese, Czech
Local operation	Via display module
	Two display modules are available:
	A0032219
	1 Operation with pushbuttons

Display elements

- 4-line, illuminated, graphic display
- Format for displaying measured variables and status variables can be individually configured
 Permitted ambient temperature for the display: -20 to +60 °C (-4 to +140 °F) The readability of the display may be impaired at temperatures outside the temperature range.

Operating elements

• Operation with 3 push buttons with open housing: ⊕ 🕞 🗊

Remote operation

Via HART protocol

This communication interface is available in device versions with a HART output.

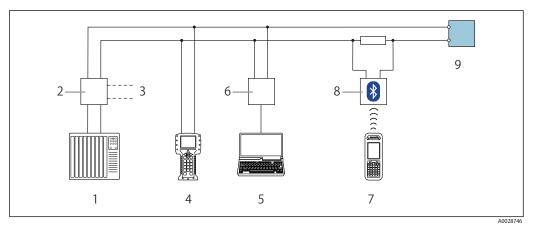


Fig. 29 Options for remote operation via HART protocol (passive)

- 1 Control system (e.g. PLC)
- 2 Transmitter power supply unit, e.g. RN221N (with communication resistor)
- 3 Connection for Commubox FXA195 and Field Communicator 475
- 4 Field Communicator 475
- 5 Computer with web browser (e.g. Internet Explorer) for accessing computers with operating tool (e.g. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM) with COM DTM "CDI Communication TCP/IP"
- 6 Commubox FXA195 (USB)
- 7 Field Xpert SFX350 or SFX370
- 8 VIATOR Bluetooth modem with connecting cable
- 9 Transmitter

Certificates and approvals

CE mark	The device meets the legal requirements of the applicable EU Directives. These are listed in the corresponding EU Declaration of Conformity along with the standards applied.
	TLV confirms successful testing of the device by affixing to it the CE mark.
RCM-tick symbol	The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)".
HART certification	HART interface
	The measuring device is certified and registered by the FieldComm Group. The measuring system meets all the requirements of the following specifications: • Certified according to HART
	• The device can also be operated with certified devices of other manufacturers (interoperability)
Pressure Equipment Directive	The devices can be ordered with or without a PED approval. If a device with a PED approval is required, this must be explicitly stated in the order.
	 With the identification PED/G1/x (x = category) on the sensor nameplate, Endress+Hauser confirms conformity with the "Essential Safety Requirements" specified in Appendix I of the Pressure Equipment Directive 2014/68/EU. Devices bearing this marking (PED) are suitable for the following types of medium: Media in Group 1 and 2 with a vapor pressure greater than, or smaller and equal to0.5 bar (7.3 psi) Devices not bearing this marking (PED) are designed and manufactured according to good engineering practice. They meet the requirements of Article 4 paragraph 3 of the Pressure Equipment Directive 2014/68/EU. The range of application is indicated in tables 6 to 9 in Annex of the Pressure Equipment Directive 2014/68/EU.

Experience	The EF200-C measuring system is the official successor to EF200 and EF73.
Other standards and guidelines	 EN 60529 Degrees of protection provided by enclosures (IP code) DIN ISO 13359 Measurement of conductive liquid flow in closed conduits - Flanged-type electromagnetic flowmeters - Overall length EN 61010-1 Safety requirements for electrical equipment for measurement, control and laboratory use - general requirements IEC/EN 61326 Emission in accordance with Class A requirements. Electromagnetic compatibility (EMC requirements). NAMUR NE 21 Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment NAMUR NE 32 Data retention in the event of a power failure in field and control instruments with microprocessors NAMUR NE 43 Standardization of the signal level for the breakdown information of digital transmitters with analog output signal. NAMUR NE 53
	 Software of field devices and signal-processing devices with digital electronics NAMUR NE 105 Specifications for integrating fieldbus devices in engineering tools for field devices NAMUR NE 107 Self-monitoring and diagnosis of field devices NAMUR NE 131 Requirements for field devices for standard applications

Application packages

Many different application packages are available to enhance the functionality of the device. Such packages might be needed to address safety aspects or specific application requirements.

Wet steam detection	Package	Description
	Wet steam detection	Wet steam detection provides a qualitative parameter for monitoring the steam application. It is an additional indicator for checking steam quality. A warning is displayed as soon as the steam quality drops below $x = 0.80$ (80%).
		 Additional quality parameter for ensuring a safe and efficient steam process Additional indicator to monitor the operation of steam traps

Wet steam measurement	Package	Description
	Wet steam measurement	Innovative measurement of the steam quality and degree of overheating. The wet steam detection application package extends wet steam measurement to include the continuous display of the steam quality. The steam quality is used to calculate the correct volume flow and mass flow and can be assigned to outputs. The condensate amount can be displayed. By evaluating the data, deviations in the process can be quickly detected.
		 As the warning values can be freely defined, users have optimum control of the steam process. Additional quality parameter for ensuring a safe and efficient steam process. Additional indicator to monitor the operation of steam traps. Combined with active pressure compensation, the device guarantees correct steam measurement. Automatic calculation of the steam state and correct measurement of the steam amount. Automatic navigation through the steam areas (wet steam, saturated steam and superheated steam).

Supplementary documentation

Standard documentation

Brief Operating Instructions

Brief Operating Instructions for the sensor

Measuring device	Documentation code
EF200-C	172-65765M

Operating Instructions

Measuring device	Documentation code
EF200F-C	172-65757M

Description of Device Parameters

Measuring device	Documentation code
EF200-C	172-65764M

Registered trademarks

HART[®]

Registered trademark of the FieldComm Group, Austin, Texas, USA

TLV EXPRESS LIMITED WARRANTY

Subject to the limitations set forth below, TLV CO., LTD., a Japanese corporation ("**TLV**"), warrants that products which are sold by it, TLV International Inc. ("**TII** of its group companies excluding TLV Corporation (a corporation of the United States of America), (hereinafter the "**Products**") are designed and manufactured by TLV, conform to the specifications published by TLV for the corresponding part numbers (the "**Specifications**") and are free from defective workmanship and materials. The party from whom the Products were purchased shall be known hereinafter as the "**Seller**". With regard to products or components manufactured by unrelated third parties (the "**Components**"), TLV provides no warranty other than the warranty from the third party manufacturer(s), if any.

Exceptions to Warranty

This warranty does not cover defects or failures caused by:

- 1. improper shipping, installation, use, handling, etc., by persons other than TLV, TII or TLV group company personnel, or service representatives authorized by TLV; or
- 2. dirt, scale or rust, etc.; or
- improper disassembly and reassembly, or inadequate inspection and maintenance by persons other than TLV or TLV group company personnel, or service representatives authorized by TLV; or
- 4. disasters or forces of nature or Acts of God; or
- abuse, abnormal use, accidents or any other cause beyond the control of TLV, TII or TLV group companies; or
- 6. improper storage, maintenance or repair; or
- 7. operation of the Products not in accordance with instructions issued with the Products or with accepted industry practices; or
- 8. use for a purpose or in a manner for which the Products were not intended; or
- 9. use of the Products in a manner inconsistent with the Specifications; or
- 10. use of the Products with Hazardous Fluids (fluids other than steam, air, water, nitrogen, carbon dioxide and inert gases (helium, neon, argon, krypton, xenon and radon)); or
- 11. failure to follow the instructions contained in the TLV Instruction Manual for the Product.

Duration of Warranty

This warranty is effective for a period of one (1) year after delivery of Products to the first end user. Notwithstanding the foregoing, asserting a claim under this warranty must be brought within three (3) years after the date of delivery to the initial buyer if not sold initially to the first end user.

ANY IMPLIED WARRANTIES NOT NEGATED HEREBY WHICH MAY ARISE BY OPERATION OF LAW, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY EXPRESS WARRANTIES NOT NEGATED HEREBY, ARE GIVEN SOLELY TO THE INITIAL BUYER AND ARE LIMITED IN DURATION TO ONE (1) YEAR FROM THE DATE OF SHIPMENT BY THE SELLER.

Exclusive Remedy

THE EXCLUSIVE REMEDY UNDER THIS WARRANTY, UNDER ANY EXPRESS WARRANTY OR UNDER ANY IMPLIED WARRANTIES NOT NEGATED HEREBY (INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE), IS **REPLACEMENT**; PROVIDED: (a) THE CLAIMED DEFECT IS REPORTED TO THE SELLER IN WRITING WITHIN THE WARRANTY PERIOD, INCLUDING A DETAILED WRITTEN DESCRIPTION OF THE CLAIMED DEFECT AND HOW AND WHEN THE CLAIMED DEFECTIVE PRODUCT WAS USED; AND (b) THE CLAIMED DEFECTIVE PRODUCT AND A COPY OF THE PURCHASE INVOICE IS RETURNED TO THE SELLER, FREIGHT AND TRANSPORTATION COSTS PREPAID, UNDER A RETURN MATERIAL AUTHORIZATION AND TRACKING NUMBER ISSUED BY THE SELLER. ALL LABOR COSTS, SHIPPING COSTS, AND TRANSPORTATION COSTS ASSOCIATED WITH THE RETURN OR REPLACEMENT OF THE CLAIMED DEFECTIVE PRODUCT ARE SOLELY THE RESPONSIBILITY OF BUYER OR THE FIRST END USER. THE SELLER RESERVES THE RIGHT TO INSPECT ON THE FIRST END USER'S SITE ANY PRODUCTS CLAIMED TO BE DEFECTIVE BEFORE ISSUING A RETURN MATERIAL AUTHORIZATION. SHOULD SUCH INSPECTION REVEAL, IN THE SELLER'S REASONABLE DISCRETION, THAT THE CLAIMED DEFECT IS NOT COVERED BY THIS WARRANTY, THE PARTY ASSERTING THIS WARRANTY SHALL PAY THE SELLER FOR THE TIME AND EXPENSES RELATED TO SUCH ON-SITE INSPECTION.

Exclusion of Consequential and Incidental Damages

IT IS SPECIFICALLY ACKNOWLEDGED THAT THIS WARRANTY, ANY OTHER EXPRESS WARRANTY NOT NEGATED HEREBY, AND ANY IMPLIED WARRANTY NOT NEGATED HEREBY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, DO NOT COVER, AND NEITHER TLV, TII NOR ITS TLV GROUP COMPANIES WILL IN ANY EVENT BE LIABLE FOR, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING, BUT NOT LIMITED TO LOST PROFITS, THE COST OF DISASSEMBLY AND SHIPMENT OF THE DEFECTIVE PRODUCT, INJURY TO OTHER PROPERTY, DAMAGE TO BUYER'S OR THE FIRST END USER'S PRODUCT, DAMAGE TO BUYER'S OR THE FIRST END USER'S PROCESSES, LOSS OF USE, OR OTHER COMMERCIAL LOSSES. WHERE, DUE TO OPERATION OF LAW, CONSEQUENTIAL AND INCIDENTAL DAMAGES UNDER THIS WARRANTY, UNDER ANY OTHER EXPRESS WARRANTY NOT NEGATED HEREBY OR UNDER ANY IMPLIED WARRANTY NOT NEGATED HEREBY (INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE) CANNOT BE EXCLUDED, SUCH DAMAGES ARE EXPRESSLY LIMITED IN AMOUNT TO THE PURCHASE PRICE OF THE DEFECTIVE PRODUCT. THIS EXCLUSION OF CONSEQUENTIAL AND INCIDENTAL DAMAGES, AND THE PROVISION OF THIS WARRANTY LIMITING REMEDIES HEREUNDER TO REPLACEMENT, ARE INDEPENDENT PROVISIONS, AND ANY DETERMINATION THAT THE LIMITATION OF REMEDIES FAILS OF ITS ESSENTIAL PURPOSE OR ANY OTHER DETERMINATION THAT EITHER OF THE ABOVE REMEDIES IS UNENFORCEABLE, SHALL NOT BE CONSTRUED TO MAKE THE OTHER PROVISIONS UNENFORCEABLE.

Exclusion of Other Warranties

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, AND ALL OTHER WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE EXPRESSLY DISCLAIMED.

Severability

Any provision of this warranty which is invalid, prohibited or unenforceable in any jurisdiction shall, as to such jurisdiction, be ineffective to the extent of such invalidity, prohibition or unenforceability without invalidating the remaining provisions hereof, and any such invalidity, prohibition or unenforceability in any such jurisdiction shall not invalidate or render unenforceable such provision in any other jurisdiction.

Service

For Service or Technical Assistance: Contact your TLV representative or your regional TLV office.

In Europe:	
TLY EURO ENGINEERING GmbH Daimler-Benz-Straße 16-18, 74915 Waibstadt, Germany	Tel: [49]-(0)7263-9150-0 Fax: [49]-(0)7263-9150-50
TLX. EURO ENGINEERING UK LTD. Units 7 & 8, Furlong Business Park, Bishops Cleeve, Gloucestershire GL52 8TW, U.K.	Tel: [44]-(0)1242-227223 Fax: [44]-(0)1242-223077
TLV. EURO ENGINEERING FRANCE SARL Parc d'Ariane 2, bât. C, 290 rue Ferdinand Perrier, 69800 Saint Priest, France	Tel: [33]-(0)4-72482222 Fax: [33]-(0)4-72482220
In North America:	
TLX CORPORATION 13901 South Lakes Drive, Charlotte, NC 28273-6790, U.S.A.	Tel: [1]-704-597-9070 Fax: [1]-704-583-1610
In Mexico and Latin America:	
TLX ENGINEERING S. A. DE C.V. Av. Jesús del Monte 39-B-1001, Col. Hda. de las Palmas, Huixquilucan, Edo. de México, 52763, Mexico	Tel: [52]-55-5359-7949 Fax: [52]-55-5359-7585
In Oceania:	
TLX. PTY LIMITED Unit 8, 137-145 Rooks Road, Nunawading, Victoria 3131, Australia	Tel: [61]-(0)3-9873 5610 Fax: [61]-(0)3-9873 5010
In East Asia:	
TLX. PTE LTD 36 Kaki Bukit Place, #02-01/02, Singapore 416214	Tel: [65]-6747 4600 Fax: [65]-6742 0345
TLV. SHANGHAI CO., LTD. 5/F, Building 7, No.103 Caobao Road, Xuhui District, Shanghai, China 200233	Tel: [86]-(0)21-6482-8622 Fax: [86]-(0)21-6482-8623
TLX ENGINEERING SDN. BHD. No.16, Jalan MJ14, Taman Industri Meranti Jaya, 47120 Puchong, Selangor, Malaysia	Tel: [60]-3-8052-2928 Fax: [60]-3-8051-0899
TLV. PRIVATE LIMITED 252/94 (K-L) 17th Floor, Muang Thai-Phatra Complex Tower B, Rachadaphisek Road, Huaykwang, Bangkok 10310, Thailand	Tel: [66]-2-693-3799 Fax: [66]-2-693-3979
TLV INC. #302-1 Bundang Technopark B, 723 Pangyo-ro, Bundang, Seongnam, Gyeonggi, 13511, Korea	Tel: [82]-(0)31-726-2105 Fax: [82]-(0)31-726-2195
In the Middle East:	
TLY. ENGINEERING FZCO Building 2W, No. M002, PO Box 371684, Dubai Airport Free Zone, Dubai, UAE	Email: sales-me@tlv.co.jp
In Other Countries:	
TLV INTERNATIONAL, INC. 881 Nagasuna, Noguchi, Kakogawa, Hyogo 675-8511, Japan	Tel: [81]-(0)79-427-1818 Fax: [81]-(0)79-425-1167
Manufacturer:	
TLX دمریته. 881 Nagasuna, Noguchi, Kakogawa, Hyogo 675-8511, Japan	Tel: [81]-(0)79-427-1800 Fax: [81]-(0)79-422-2277