CYCLONE SEPARATOR TLV

MODEL DC7

HIGH EFFICIENCY STAINLESS STEEL SEPARATOR

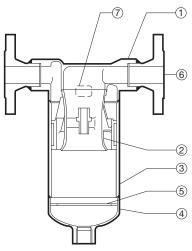
Features

All stainless steel separator, employing a cyclone-effect to efficiently separate condensate from steam and air.

- 1. All-welded, maintenance-free construction.
- 2. Compact and light weight.
- 3. All parts made from stainless steel with high durability and corrosion resistance for long service life.
- 4. Separator achieves condensate separation efficiency as high as 98%.

Specifications

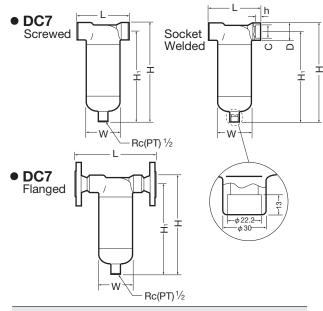
Model		DC7				
Connection		Screwed Socket Welded Flanged				
Size (mm)		15, 20, 25, 40, 50				
Maximum Operating Pressure (MPaG)	PMO	2.5				
Maximum Operating Temperature (°C)	ТМО	300				
Applicable Fluids*			Steam, Air			
* Do not use for toxic, flammable or otherwise h	1 MPa = 10.197 kg/cm ²					

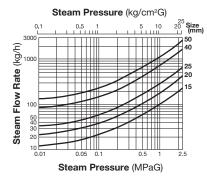

PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA: 2.5 Maximum Allowable Temperature (°C) TMA: 300

CAUTION

To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted.

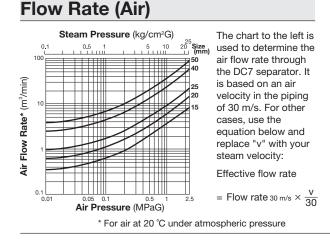
NLa	Description			110	
No.	Description		Material	JIS	ASTM/AISI*
1	Body		Cast Stainless Steel	—	A351 Gr.CF8
2	Separator		Cast Stainless Steel	—	A351 Gr.CF8
3	Separator Body		Stainless Steel	SUS304	AISI304
(4)	Separator Bottom		Cast Stainless Steel	—	A351 Gr.CF8
(5)	Baffle		Stainless Steel	SUS304	AISI304
(6)	Flange	15 to 25 mm	Cast Stainless Steel	—	A351 Gr.CF8
9	Flange	40, 50 mm	Stainless Steel	SUS304	AISI304
7	Nameplate		Stainless Steel	SUS304	AISI304


* Equivalent materials


TLV

Consulting · Engineering · Services

Dimensions


Flow Rate (Steam)

The chart to the left is used to determine the steam flow rate through the DC7 separator. It is based on a steam velocity in the piping of 30 m/s. For other cases, use the equation below and replace "v" with your steam velocity: Effective flow rate

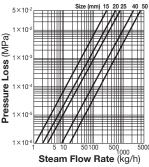
= Flow rate 30 m/s $\times \frac{v}{30}$

It is recommended that steam velocities not exceed 30 m/s.

DC7 Screwed*/Socket Welded**

								()
Size*	L	Н	H1	φW	φD	φC	h	Weight (kg)
15	130	130 229	210 89		89 36	22.2	13	3.4
20				09		27.7		
25	150	263	240	101	44	34.5		5.3
40	170	326	295	114	59	49.1]	6.5
50	220	397	360	165	72	61.1	16	15

* Rc(PT), other standards available


** ASME B16.11-2005, other standards available

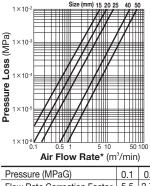
DC7 Flanged

· ·						()
Size	L ASME Class		н	H1	φW	Weight* (kg)
	150RF	300RF				(**3)
15	178	178	229	210	89	4.8
20	191	191	229	210	09	5.7
25	227	227	263	240	101	8.4
40	251	258	326	295	114	12
50	331	337	397	360	165	22

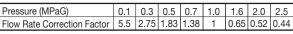
Other standards available, but length and weight may vary * Weight is for Class 300 RF

Pressure Loss (Steam)

The pressure loss chart is based on a steam pressure of 1.0 MPaG. For other pressures, multiply the steam flow rate by the correction factor given in the table below. Use this value on the pressure loss chart.


(mm)

(mm)


 Pressure (MPaG)
 0.1
 0.3
 0.5
 0.7
 1.0
 1.6
 2.0
 2.5

 Flow Rate Correction Factor
 2.24
 1.62
 1.34
 1.16
 1
 0.81
 0.73
 0.67

Pressure Loss (Air)

The pressure loss chart is based on an air pressure of 1 MPaG. For other pressures, multiply the air flow rate by the correction factor given in the table below. Use this value on the pressure loss chart.

Manufacturer

Kakogawa, Japan

ISO 14001

ISO 9001

Copyright © TLV

(M)

https://www.tlv.com

SDS M2804-04 Rev. 4/2022 Products for intended use only. Specifications subject to change without notice.