TLV. PowerTrap.

MODEL GT10L

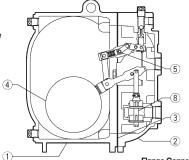
COMPACT MECHANICAL PUMP WITH STEAM TRAP FOR CONDENSATE REMOVAL AND RECOVERY

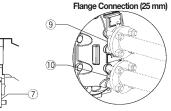
Features

Pump/Trap with built-in steam trap for a wide range of applications: drainage of low capacity heat exchangers, flash steam recovery systems and reservoirs, often operating under vacuum conditions.

- 1. Handles high-temperature condensate without cavitation.
- 2. No electric power or additional level controls required, hence INTRINSICALLY SAFE.
- 3. Pump will operate with a low filling head (min. 300 mm).
- 4. Easy, inline access to internal parts simplifies cleaning and reduces maintenance costs.
- 5. High-quality stainless steel internals and hardened working surfaces ensure reliability.
- 6. Compact design permits installation in a limited space.

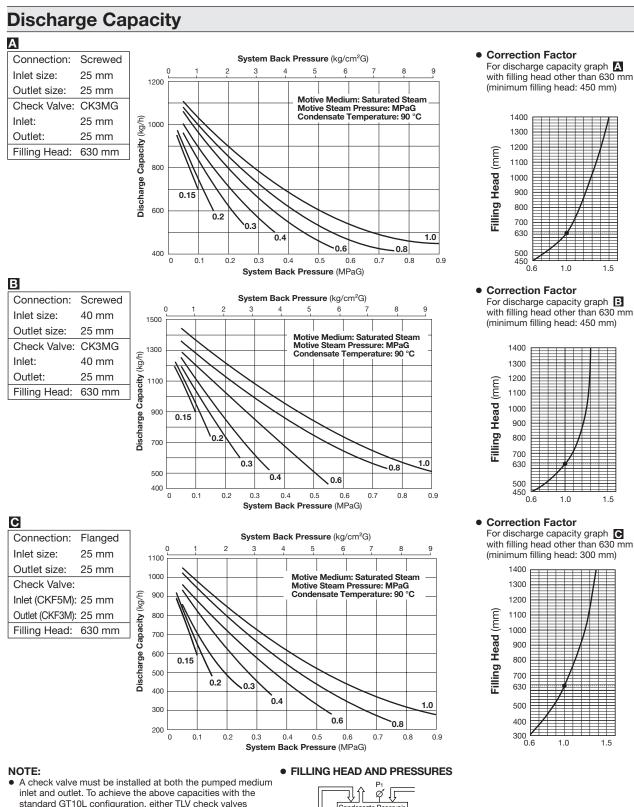
Specifications

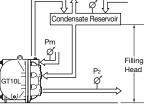

Model		GT10L			
Oranatian	Pumped Medium Inlet & Outlet	Screwed and Flanged*	Screwed		
Connection	Motive Medium & Pump Exhaust	Screwe	d		
Size (mm)	Pumped Medium: Inlet × Outlet	25 × 25	40 × 25		
	Motive Medium Inlet	15			
	Pump Exhaust Outlet	15			
Maximum Operating Pressure (MPaG) PMO		1.05			
Maximum Operating Temperature (°C) TMO		185			
Motive Medium Pressure Range (MPaG)		0.03 to 1.05			
Maximum Allowable Back Pressure		0.05 MPa less than motive medium pressure used			
Volume of Each Discharge Cycle (ℓ)		Approx. 6.0			
Motive Medi	um**	Saturated Steam			
Pumped Med	dium***	Steam Condensate			


* For details of flange connection, see picture at bottom right. ** Do not use with toxic, flammable or otherwise hazardous fluids. 1 MPa = 10.197 kg/cm² *** Do not use for fluids with specific gravities under 0.85 or over 1, or for toxic, flammable or otherwise hazardous fluids.

PRESSURE SHELL DESIGN CONDITIONS (**NOT** OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA: 1.6 (Cast Iron), 2.1 (Cast Steel) Maximum Allowable Temperature (°C) TMA: 220

CAUTION To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted.


No.	Description			Material	JIS	ASTM/AISI*	
	Do du			Cast Iron	FC250	A126 Cl.B	
1	Body			Cast Steel**	_	A216 Gr.WCB	
	Cover			Cast Iron	FC250	A126 CI.B	
2				Cast Steel**	-	A216 Gr.WCB	
3	Cover Gasket			Graphite Compound	-	—	
4	Float			Stainless Steel	SUS316L	AISI316L	
5	Snap-action Unit			Stainless Steel	_	-	
6			Intake Valve	Stainless Steel	SUS440C	AISI440C	
			Valve Seat	Stainless Steel	SUS420F	AISI420F	
0	Exhaust Valve Unit		Exhaust Valve	Stainless Steel	SUS440C	AISI440C	
7			Valve Seat	Stainless Steel	SUS420F	AISI420F	
8	Trap Unit			Stainless Steel	_	-	
9	Inlet Check	Screwed	CK3MG***	Cast Stainless Steel	-	A351 Gr.CF8	
	٢	Valve	Flanged	CKF5M	Stainless Steel	SUS304	AISI304
10	Outlet Check Valve	Screwed	CK3MG***	Cast Stainless Steel	_	A351 Gr.CF8	
		Flanged	CKF3M	Cast Stainless Steel	_	A351 Gr.CF8	

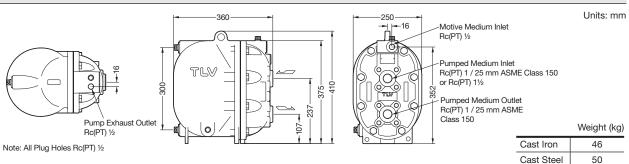


TLV

Consulting · Engineering · Services

- standard GT10L configuration, either TLV check valves CK3MG (inlet & outlet), or CKF5M (inlet) and CKF3M (outlet) must be used depending on connection type.
- Motive steam pressure minus back pressure must be greater than 0.05 MPa.
- A strainer must be installed at the motive medium and pumped medium inlets.

The discharge capacity is determined by the motive medium, motive medium pressure (Pm) and back pressure (P2).


Make sure that:

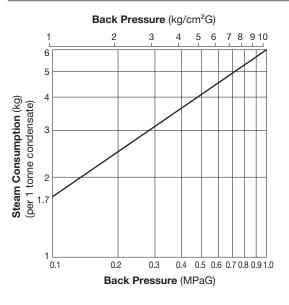
Discharge Capacity × Correction Factor > Required Flow Rate

TLV.

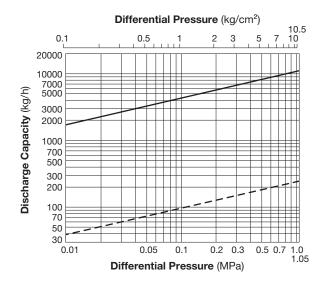
Consulting · Engineering · Services

Dimensions

Size of Reservoir


The reservoir must have a capacity sufficient to store the condensate produced during the **PowerTrap** operation and discharge.

Size of Reservoir (flash steam is not involved)


Amount of condensate	Reservoir Diameter (mm) and Length (m)							
(kg/h)	40	50	80	100	150	200	250	
300 or less	1.2 m	0.7						
400	1.5	1.0						
500	2.0	1.2	0.5					
600		1.5	0.6					
800		2.0	0.8	0.5				
1000			1.0	0.7				
1500			1.5	1.0				
2000			2.0	1.3	0.6			
3000				2.0	0.9	0.5		
4000					1.2	0.7		
5000					1.4	0.8	0.5	
6000					1.7	1.0	0.6	
7000					2.0	1.2	0.7	
8000						1.3	0.8	
9000						1.5	0.9	
10000						1.7	1.0	

Reservoir length can be reduced by 50% when the motive medium pressure (Pm) divided by back pressure (P2) equals 2 or greater (when $Pm \div P_2 \ge 2$).

Steam Consumption (Motive Medium)

GT10L Steam Trap Discharge Capacity

 Capacity of GT10L as a steam trap (P1 > P2). Instantaneous condensate loads above the rated trap capacity will cause the pump to cycle and therefore reduce the discharge capacity.

----- : Minimum amount of condensate required to prevent steam leakage.

- 1. Capacities are based on continuous discharge of condensate 6 °C below steam temperature.
- 2. Differential pressure is the difference between inlet and outlet pressure of the trap.

DO NOT use this product under conditions that exceed maximum differential pressure, as condensate backup will occur!

TLV.

$\textbf{Consulting} \cdot \textbf{Engineering} \cdot \textbf{Services}$

Memo:

Manufacturer TLV, co., LTD. Kakogawa, Japan is approved by LRQA Ltd. to ISO 9001/14001

Copyright © TLV

(T)

https://www.tlv.com

SDS M2404-06 Rev. 12/2022 Products for intended use only. Specifications subject to change without notice.