TUVE TEMPERATURE CONTROL STEAM TRAP MODEL LEX3N

FIXED TEMPERATURE DISCHARGE THERMOSTATIC TRAPS TO CONTROL TEMPERATURE

Benefits

Steel-bodied bimetal thermostatic trap for accurate control of condensate discharge temperature. Ideal for use with steam tracers, tank heaters, space heaters, and instrument enclosures.

- 1. Maintains temperature control at preset levels between 120 and 390 °F by setting the valve closing temperature.
- 2. Provides maximum energy utilization of the sensible heat in condensate that is wasted.
- 3. Lowers cost of heating instrument enclosures and eliminates need for heat lamps.
- 4. Built-in, easy-to-clean screen protects internals to extend trouble-free service life.
- Inline repairable to lower maintenance cost.
 Suitable for use as an automatic non-freeze
- valve.
- 7. Overexpansion mechanism extends life by preventing damage to the bimetal element.

Specifications

Model		LEX3N	LEXW3N	LEXF3N	
Connection	Screwed Socket Weld Flanged				
Size (in.)	$\frac{3}{8}, \frac{1}{2}, \frac{3}{4}, 1$	3/8, 1/2, 3/4, 1	1/2, 3/4, 1		
Condensate Temperature Setting Range (°F)*		120 - 390			
Maximum Operating Pressure (psig)	PMO	650			
Minimum Operating Pressure (psig)		15			
Maximum Operating Temperature (°F)	TMO	662			
Maximum Allowable Pressure (psig)	PMA	900			
Maximum Allowable Temperature (°F)	TMA	800			
* 0 * *			• ·· · · ·		

* Set temperature should be lower than 30 °F below the steam saturation temperature

NI-	Description	Matadal		110
INO.	Description	Iviaterial	Material ASTM/AISI*	
1	Body	Carbon Steel	A105	
2	Cover	Carbon Steel	A105	—
3	Valve Stem	Stainless Steel	AISI420	SUS420J2
4	Adjusting Screw	Stainless Steel	AISI303	SUS303
5	Bimetal Element	Bimetal		—
6	Plain Washer	Stainless Steel	AISI304	SUS304
7	Valve Seat	Stainless Steel	AISI303	SUS303
8	Valve Seat Gasket	Soft Iron	AISI1010	SUYP
9	Overexpansion Spring	Stainless Steel	AISI304	SUS304
10	Return Spring	Stainless Steel	AISI304	SUS304
1	Snap Ring	Stainless Steel	AISI304	SUS304
12	Snap Ring	Stainless Steel	AISI304	SUS304
13	Seal Ring	Fluorine Rubber	D2000HK	FPM
(14)	Screen	Stainless Steel	AISI430	SUS430
(15)	Lock Nut	Carbon Steel	A307 Gr.B	SS400
16	Cap Nut	Carbon Steel	A105	
17	Cover Gasket	Soft Iron	AISI1010	SUYP
(18)	Bushing	Stainless Steel	AISI303	SUS303
(19)	Spring Guide	Stainless Steel	AISI304	SUS304
20	Cap Nut Gasket	Soft Iron AISI1010 S		SUYP
21)	Flange***	Carbon Steel**	A105/216 WCB	A105/216 WCB

* Equivalent ** Either A105 or A216 WCB, depending upon flange specifications *** Shown on reverse

TLV

Consulting & Engineering Service

Dimensions

LEX3N Screwed* (ir							
Size	L	Н	H1	Weight (lb)			
3⁄8	23/	41/10	31/2	10			
1⁄2	274	01 / 1	0/8	1.0			
3⁄4	21/	47/-	21/	2.9			
1	3/8	4 / 16	3/2	2.6			

* NPT, other standards available

LEXW3N Socket Weld						(in)	
Size	L	Н	H1	φD	φC	h	Weight (lb)
3⁄8	03/	4140	314	114	11/16	14	1.0
1/2	274	4 / 16	J / 8	1/4	7⁄8	/2	1.0
3⁄4	01/	17/-	21/	113/-	1 ¹ ⁄ ₁₆	9/-	2.9
1	<u>۶⁄8</u>	4 1/16	3 1/2	1.716	1 ³ ⁄8	⁹ ⁄16	2.6

LEXF3N	Flanged*			(in)
Size	L	Н	H1	Weight (lb)
1⁄2	5 ¹¹ / ₁₆	41/16	31⁄8	5.7
3⁄4		47⁄16	31⁄2	7.7
1				8.6

* ANSI 600, other standards available

Connection and sizes in bold letters are standard

Sizing Charts

Estimation of discharge capacity.

Example: The flow rate of condensate discharging from 100 psig to atmosphere at 200 $^\circ\!F$ from a trap set to 230 $^\circ\!F$ is determined as follows:

Step 1: Use the discharge capacity graph.

From the 200 $^\circ F$ condensate temperature on the horizontal axis, follow a vertical line until it intersects the 230 $^\circ F$ set temperature curve (point A).

From A, follow a horizontal line across to the vertical axis (point B), and read the discharge capacity, 440 lb/h.

Step 2: Use the correction graph.

Because the discharge capacity graph is based on a steam pressure of 300 psig, a correction factor must be used to adjust the discharge capacity value to the actual differential pressure at the trap.

Read up from 100 psi on the horizontal axis to the diagonal line (point C), then across to the correction factor (point D), 0.57. Multiply the discharge capacity obtained in step 1 by the correction factor to get the actual discharge capacity: 440 °F \times 0.57=250 lb/h.

TLV: CORPORATION

13901 South Lakes Drive, Charlotte, NC 28273-6790 Phone: 704-597-9070 Fax: 704-583-1610 E-mail: tlv@tlvengineering.com For Technical Service 1-800 "TLV TRAP"

Condensate Temperature (°F)

Copyright © **TLV** (M)

http://www.tlv.com

SDS A2008-00 Rev. 12/2000 Specifications subject to change without notice.