PowerTrap TLV

MODEL GT14

MECHANICAL PUMP WITH STEAM TRAP FOR CONDENSATE REMOVAL AND RECOVERY

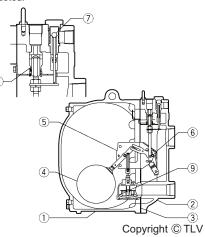
Features

Pump/Trap with built-in steam trap for a wide range of applications: drainage of heat exchangers, flash steam recovery systems and non-vented receivers such as low-pressure stages of turbines and absorption chillers, often operating under vacuum conditions.

- 1. Handles high-temperature condensate without cavitation.
- 2. No electric power or additional level controls required, hence INTRINSICALLY SAFE.
- 3. Pump will operate with a low filling head.
- 4. Durable nickel-based alloy compression coil spring.
- 5. Easy, inline access to internal parts simplifies cleaning and reduces maintenance costs.
- 6. High-quality stainless steel internals and hardened working surfaces ensure reliability.

Specifications

Model			GT14				
Body Material			Cast Iron	Cas	Cast Steel		
Connection	Pumped Medium Inlet & Outlet		Screwed	Screwed	Flanged		
	Motive Medium & Pump Ex	haust	Screwed	Screwed	Flanged		
Size (mm)	Pumped Medium Inlet × Outlet		80 × 50		50 × 50, 80 × 50		
	Motive Medium Inlet		25				
	Pump Exhaust Outlet		25				
Maximum Operating Pressure (MPaG) PMO			1.4				
Maximum Operating Temperature (°C) TMO		200					
Motive Medium Pressure Range (MPaG)			0.03 - 1.4				
Maximum Allowable Back Pressure			0.05 MPa less than motive medium pressure used, but not to exceed 1.05 MPaG				
Volume of Each Discharge Cycle (ℓ)			approximately 30				
Motive Medium*			Saturated Steam				
Pumped Medium**			Steam Condensate				

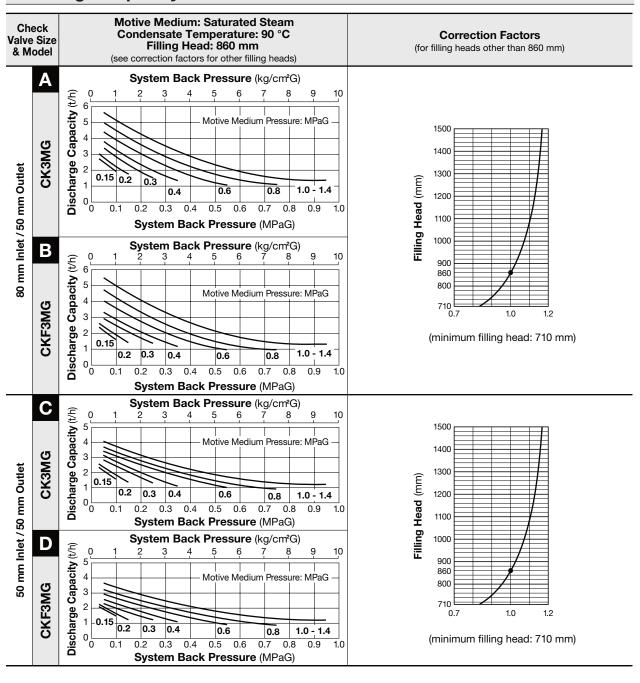

* Do not use with toxic, flammable or otherwise hazardous fluids.

1 MPa = 10.197 kg/cm²

** Do not use for fluids with specific gravities under 0.85 or over 1, or for toxic, flammable or otherwise hazardous fluids. PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA: 1.4 (Cast Iron), 1.6 (Cast Steel) Maximum Allowable Temperature (°C) TMA: 220

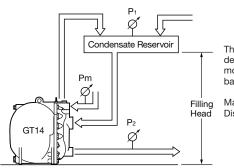
To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted. CAUTION

N.L.	Duni		NA - Louis L	110		
No.	Descri	ption	Material	JIS	ASTM/AISI*	
(1)	Body		Cast Iron	FC250	A126 CI.B	
0			Cast Steel**	_	A216 Gr.WCB	
2	Cover		Cast Iron	FC250	A126 CI.B	
			Cast Steel**	_	A216 Gr.WCB	
3	Cover Gasket		Graphite/Stainless Steel	-/SUS316L	– /AISI316L	
(4)	Float		Stainless Steel	SUS316L/303	AISI316L/303	
(5)	Lever Unit		Stainless Steel	—	—	
6	Snap-action Unit		Stainless Steel	—	_	
	Motive Medium Intake Valve Unit	Intake Valve	Stainless Steel	SUS303/440C	AISI303/440C	
7		Valve Seat	Cast Stainless Steel/	- /	A351 Gr.CF8/	
			Stainless Steel	SUS440C	AISI440C	
8	Exhaust Valve Unit	Exhaust Valve	Stainless Steel	SUS303/440C	AISI303/440C	
		Valve Seat	Stainless Steel	SUS420F	AISI420F	
9	Trap Unit		Stainless Steel	_		
10	Chaole Value***	CK3MG	Cast Stainless Steel	_	A351 Gr.CF8	
	Check Valve***	CKF3MG	Cast Stainless Steel	_	A351 Gr.CF8	


* Equivalent ** Option: Cast Stainless Steel

* Not shown, model depends on GT14 connection: CK3MG for screwed, CKF3MG for flanged

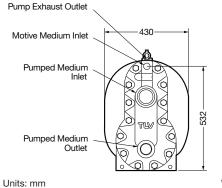
Consulting · Engineering · Services

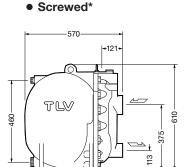

Discharge Capacity

NOTE:

- A check valve must be installed at both the pumped medium inlet and outlet. To achieve the above capacities with the standard GT14 configuration, TLV CK3MG or CKF3MG check valves must be used.
- Motive medium pressure minus back pressure must be greater than 0.05 MPa.
- A strainer must be installed at the motive medium and pumped medium inlets.

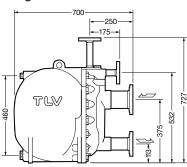
• Illustration of Filling Head and Pressure


The discharge capacity is determined by the motive medium, motive medium pressure (Pm) and back pressure (P₂).


Make sure that:

Discharge Capacity × Correction Factor > Required Flow Rate

TLV.

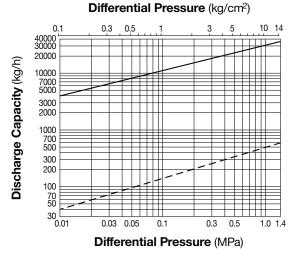

Dimensions

Weight (kg): 127 (Cast Iron), 139 (Cast Steel) * Rc(PT), other standards available

Flanged**

Weight (kg): 149 (Cast Steel) ** ASME Class 150 RF, other standards available

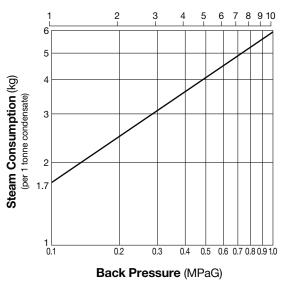
Size of Reservoir


The reservoir must have a capacity sufficient to store the condensate produced during the **PowerTrap** operation and discharge.

Size of Reservoir (flash steam is not involved)

Amount of Condensate	Reservoir Diameter (mm) and Length (m)						
(kg/h)	40	50	80	100	150	200	250
300 or less	1.2 m	0.7					
400	1.5	1.0					
500	2.0	1.2	0.5				
600		1.5	0.6				
800		2.0	0.8	0.5			
1000			1.0	0.7			
1500			1.5	1.0			
2000			2.0	1.3	0.6		
3000				2.0	0.9	0.5	
4000					1.2	0.7	
5000					1.4	0.8	0.5
6000					1.7	1.0	0.6
7000					2.0	1.2	0.7
8000						1.3	0.8
9000						1.5	0.9
10000						1.7	1.0

Reservoir length can be reduced by 50% when the motive medium pressure (Pm) divided by back pressure (P₂) equals 2 or greater (when $Pm \div P_2 \ge 2$).


GT14 Steam Trap Discharge Capacity

. .

Back Pressure (kg/cm²G)

Steam Consumption (Motive Medium)

- Capacity of GT14 as a steam trap (P₁ > P₂).
 Instantaneous condensate loads above the rated trap capacity will cause the pump to cycle and therefore reduce the discharge capacity.
- ----: Minimum amount of condensate required to prevent steam leakage.
- 1. Capacities are based on continuous discharge of condensate 6 $^\circ\text{C}$ below steam temperature.
- 2. Differential pressure is the difference between inlet and outlet pressure of the trap.

DO NOT use this product under conditions that exceed maximum differential pressure, as condensate backup will occur!

$\textbf{Consulting} \cdot \textbf{Engineering} \cdot \textbf{Services}$

Memo:

Manufacturer TLVA CO., LTD. Kakogawa, Japan is approved by LRQA Ltd. to ISO 9001/14001

Copyright © TLV

(T)

https://www.tlv.com

SDS M2404-16 Rev. 10/2021 Products for intended use only. Specifications subject to change without notice.