

PowerTrap.

TYP **GT10L** GRAUGUSS STAHLGUSS EDELSTAHL

KOMPAKTER PUMP-KONDENSATABLEITER FÜR KONDENSATAUSTRAG UND -RÜCKFÜHRUNG

Beschreibung

Kondensatheber mit eingebautem Kondensatableiter. Großer Anwendungsbereich, hervorragend geeignet zur Entwässerung von kleineren und mittleren Wärmetauschern, die im Druck- / Vakuumbetrieb arbeiten, wie auch von Nachdampfsystemen oder Sammelbehältern, die zeitweise unter Vakuum stehen.

- 1. Fördert Heißkondensat ohne Kavitationsprobleme.
- 2. Arbeitet ohne elektrischen Antrieb und benötigt keine Niveauregelung. Daher ideal in explosionsgefährdeterUmgebung einsetzbar.
- 3. Nur sehr geringe Zulaufhöhe erforderlich (mind. 300 mm).
- 4. Innenteile leicht erreichbar für Wartung und Reparatur, ohne Demontage der Rohrleitungen.
- Hochwertige Innenteile aus Edelstahl und gehärtete Oberflächen gewährleisten störungsfreien Betrieb.
- 6. Kompakte Bauweise ermöglicht Einbau unter beschränkten Raumverhältnissen.

Technische Daten

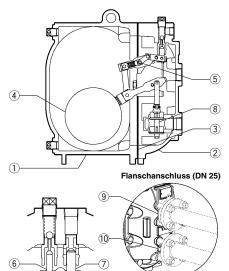
Тур			GT10L		
Anschlüsse	Einlass & Auslass Fördermedium		Muffe und Flansch*	Muffe	
Anschlusse	Antriebsmedium & Ausblaseleitung		Muffe		
Größe/DN	Einlass × Auslass Fördermedium		1"/DN 25×1"/DN 25	1½"×1"	
	Einlass Antriebsmedium		1/2"		
	Auslass Ausblaseleitung		1/2"		
Maximaler Betriebsdruck (bar ü) PMO		PMO	10,5		
Maximale Betriebstemperatur (°C) TMO		185			
Antriebsdruckbereich (bar ü)			0,3 bis 10,5		
Maximal zulässiger Gegendruck			0,5 bar unter dem benutzten Antriebsdruck		
Fördermenge bei jedem Pumpzyklus (ℓ)			ca. 6		
Antriebsmedium**			Dampf		
Fördermedium***			Dampfkondensat		
Optionale Spezifikationen für explosionsgefährdete Bereiche		rdete Bereiche	ATEX: WI2G Ex h IIC T3 Gb		

* Details zu Flanschanschluss siehe Zeichnung unten recht ** Nicht mit giftigen, entflammbaren oder sonst wie gefährlichen Fluiden benutzen. *** Nicht für Fluide mit spezifischem Gewicht unter 0,85 oder über 1 benutzen; nicht für giftige, entflammbare oder sonst wie gefährliche Fluide benutzen.

1 bar = 0,1 MPa

Copyright © TLV

AUSLEGUNGSDATEN (NICHT BETRIEBSDATEN):

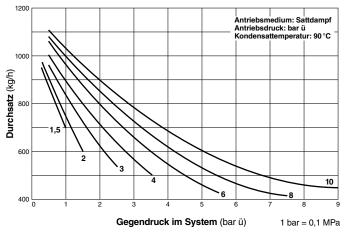

Maximal zulässiger Druck (bar ü) PMA: 13 (Grauguss), 21 (Stahlguss), 16 (Edelstahlguss) Maximal zulässige Temperatur (°C) TMA: 200 (Grauguss), 220 (Stahlguss, Edelstahlguss)

⚠vorsicht

Die spezifizierten Betriebsgrenzen NICHT ÜBERSCHREITEN. Nichtbeachtung kann zu Betriebsstörungen oder Unfällen führen. Lokale Vorschriften können zur Unterschreitung der angegebenen Werte zwingen.

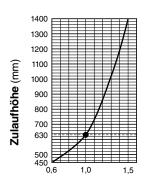
Volcommon terminal and an angegosoment works swingon.							
Nr.	Bauteil			Werkstoff	DIN*	ASTM/AISI*	
	Gehäuse			Grauguss FC250	0.6025	A126 CI.B	
1				Stahlguss A216 Gr.WCB	1.0619	_	
				Edelstahlguss A351 Gr.CF8	1.4312	_	
	Gehäusedeckel			Grauguss FC250	0.6025	A126 CI.B	
2				Stahlguss A216 Gr.WCB	1.0619	_	
				Edelstahlguss A351 Gr.CF8	1.4312	_	
3	Gehäusedichtung			Graphitpackung	_	_	
4	Schwimmerkugel			Edelstahl SUS316L	1.4404	AISI316L	
(5)	Steuergestänge			Edelstahl	_	_	
(6)	Ventilsatz Einlassver			Edelstahl SUS440C	1.4125	AISI440C	
0	Antriebsmedium		Ventilsitz	Edelstahl SUS420F	1.4028	AISI420F	
	Ventilsatz		Ausblaseventil	Edelstahl SUS440C	1.4125	AISI440C	
7	Ausblaseleitung		Ventilsitz	Edelstahl SUS420F	1.4028	AISI420F	
8	Kondensatableitersatz			Edelstahl	_	_	
	Rückschlagventil	Muffe	CK3MG**	Edelstahlguss A351 Gr.CF8	1.4312	_	
9	(Einlass)	Flansch	CKF5M	Edelstahl SUS304	1.4301	AISI304	
(10)	Rückschlagventil	Muffe	CK3MG**	Edelstahlguss A351 Gr.CF8	1.4312	_	
10	(Auslass)	Flansch	CKF3M	Edelstahlguss A351 Gr.CF8 1.4312		_	

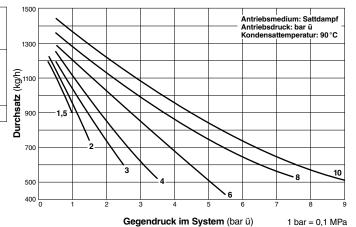
^{*} Vergleichbare Werkstoffe ** Nicht gezeigt



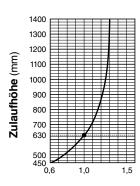
Consulting · Engineering · Services

Durchsatzkurven


Α

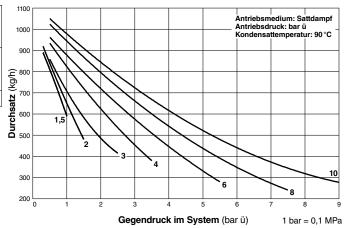

Korrekturfaktor

Für Durchsatzkurven A bei Zulaufhöhe ungleich 630 mm (Mindestzulaufhöhe: 450 mm)

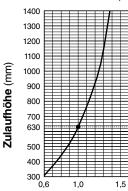


В

Anschluss:	Muffe
Einlass:	1 ½″
Auslass:	1″
Rückschlag-	
ventil:	CK3MG
Einlass:	1 ½″
Auslass:	1″
Auslass: Füllhöhe	1" 630 mm

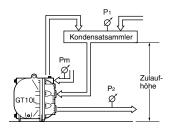


Korrekturfaktor



C

Anschluss:	Flansch			
Einlass:	DN 25			
Auslass:	DN 25			
Rückschlagventil:				
Einlass (CKF5M): DN 25				
Auslass (CKF	3M): DN 25			
Füllhöhe	630 mm			


Korrekturfaktor

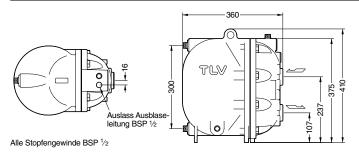
ANMERKUNG:

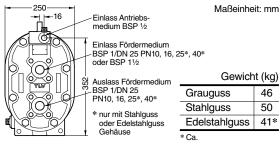
- Am Einlass und Auslass des Fördermediums sind Rückschlagventile einzubauen. Um den oben gezeigten Durchsatz zu erreichen, sind entweder das TLV Rückschlagventil CK3MG (Einlass und Auslass) oder CKF5M (Einlass) und CKF3M (Auslass) einzubauen. Größe und Anschlussart müssen denen des Kondensathebers entsprechen.
- Die Differenz zwischen Antriebsdruck und Gegendruck muss mindestens 0,5 bar betragen.
- In geschlossenen Systemen muss das Antriebsmedium mit dem Fördermedium verträglich sein. Falls nichtkondensierbare Gase, wie Luft oder Stickstoff als Antriebsmedium eingesetzt werden, bitte TLV konsultieren.
- Am Einlass von Antriebsmedium und Fördermedium sind Schmutzfänger einzubauen.

Zulaufhöhe und Drücke

Der Durchsatz ist abhängig von Antriebsmedium, Antriebsdruck (Pm) und Gegendruck (P2).

Bitte beachten dass Durchsatz×Korrekturfaktor > benötigter Durchsatz ist

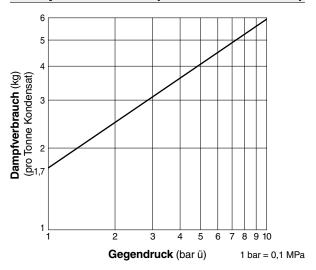

Copyright © TLV


SDS G2404-06

Consulting · Engineering · Services

Abmessungen

Abmessungen des Kondensatsammlers


Der Kondensatsammler nimmt die Kondensatmenge auf, die während des Pumpzyklus nicht in das Gehäuse des Kondensathebers eintreten kann, da das Rückschlagventil am Einlass dies verhindert.

Wenn nicht mit Entspannungsdampf gerechnet werden muss

Kondensat- menge	Abmessungen des Kondensatsammlers (mm) und Länge (m)						
(kg/h)	40	50	80	100	150	200	250
300 oder weniger	1,2 m	0,7					
400	1,5	1,0					
500	2,0	1,2	0,5				
600		1,5	0,6				
800		2,0	0,8	0,5			
1000			1,0	0,7			
1500			1,5	1,0			
2000			2,0	1,3	0,6		
3000				2,0	0,9	0,5	
4000					1,2	0,7	
5000					1,4	0,8	0,5
6000					1,7	1,0	0,6
7000					2,0	1,2	0,7
8000						1,3	0,8
9000						1,5	0,9
10000						1,7	1,0

Die Länge des Kondensatsammlers kann um 50% verkürzt werden, wenn der Druck des Antriebsmediums (Pm) dividiert durch den Gegendruck (P_2) 2 oder größer ist ($Pm \div P_2 \geqq 2$).

Dampfverbrauch (Antriebsmedium)

Durchsatz Kondensatableiter GT10L

- Durchsatz bei kontinuierlicher Kondensatableitung 6 °C unterhalb der Sattdampftemperatur.
- Der Differenzdruck ist die Differenz des Druckes vor und nach dem Kondensatableiter
 - : Durchsatz von GT10L als Kondensatableiter (P1 > P2).
 Bei höherem Kondensatanfall erfolgt Umschaltung auf Pumpbetrieb, wodurch sich der Durchsatz verringert.
 - — : Mindestdurchsatzmenge die notwendig ist, um Dampfleckage zu vermeiden.

Maximalen Differenzdruck nicht überschreiten, da sonst Kondensatrückstau auftreten kann!

Copyright © TLV SDS G2404-06

Consulting · Engineering · Services

Notizen:

TLY: EURO ENGINEERING GmbH

Daimler-Benz-Straße 16-18, 74915 Waibstadt, Germany Tel: [49]-(0)7263-9150-0

E-mail: info@tlv-euro.de https://www.tlv.com

