

PowerTrap

MODELO GP10

BOMBA MECÁNICA PARA RETIRO Y RECUPERACIÓN DE CONDENSADO

Características

Bomba para amplio rango de aplicaciones. Ideal para el retiro de condensado de colectores venteados y colectores de drenaje.

- 1. Maneja condensado de alta temperatura sin cavitación.
- 2. No requiere electricidad ni controles de nivel adicionales, por eso es INTRÍNSECAMENTE SEGURO.
- 3. La bomba funciona con un bajo cabezal de llenado.
- 4. Durable resorte de compresión de aleación base níquel.
- 5. El fácil acceso a sus partes internas simplifica su limpieza y reduce costos de mantenimiento.
- 6. Partes internas de acero inoxidable de alta calidad y superficies de trabajo endurecidas aseguran confiabilidad.
- 7. Contador de Ciclos instalable como opción.

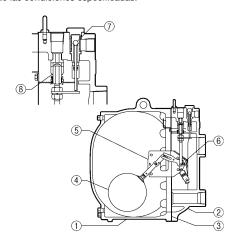
Especificaciones

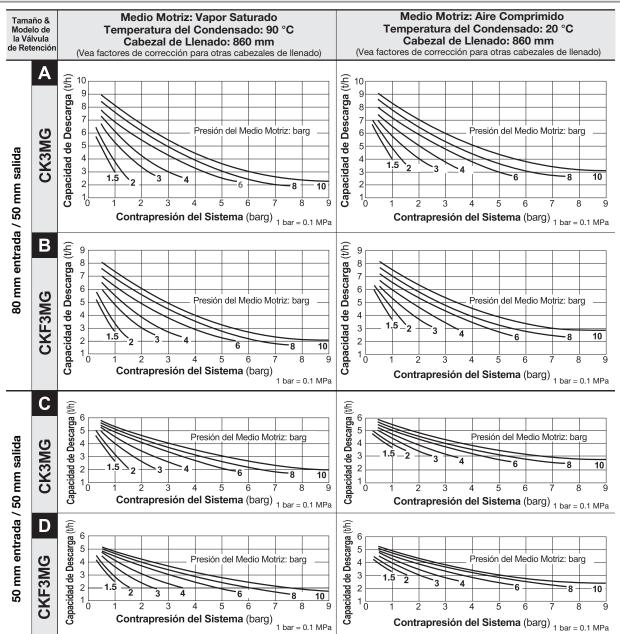
Modelo		GP10			
Material de Cuerpo		Fundición Hierro	Fund. Acero		
Conexión	Entrada & Salida del Medio Bombeado		Roscada	Roscada	Bridada
	Medio motriz & Escape de Bomba		Roscada	Roscada	Bridada
Tamaño (mm)	Entrada × Salida del Medio Bombeado		80 × 50		50 × 50, 80 × 50
	Entrada del Medio Motriz		25		
	Salida Escape		25		
Presión Máxima de Operación (barg) PMO		10.5			
Temperatura Máxima de Operación (°C) TMO		185			
Rango de Presión del Medio Motriz (barg)		0.3 a 10.5			
Contrapresión Máxima Permisible		0.5 bar por debajo de la presión del medio motriz utilizado			
Volumen de Cada Ciclo de Descarga (ℓ)		aproximadamente 30			
Medio Motriz*		Vapor Saturado, Aire Comprimido, Nitrógeno			
Medio Bombeado**		Condensado de Vapor, Agua			

1 bar = 0.1 MPa

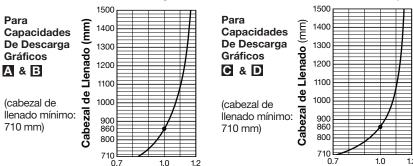
^{*} No utilizar para fluidos tóxicos, flamables o fluidos peligrosos.

** No utilizar con fluidos con gravedad específica debajo 0.85 o sobre 1, o para fluidos tóxicos, flamables o fluidos peligrosos.

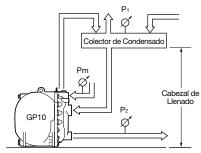

PRESIÓN DE DISEÑO (NO CONDICIONES DE OPERACIÓN): Presión máxima permisible (barg) PMA: 14 (hierro fundido), 16 (fund. acero) Temperatura máxima permisible (°C) TMA: 220


Para evitar operación anormal, accidentes o lesiones serias, NO USE este producto fuera del rango de especificaciones. Regulaciones locales pudiesen restringir el uso de este producto debajo de las condiciones especificadas.

Ν°	Descripción		Material	JIS	ASTM/AISI*	
	① Cuerpo		Fundición Hierro	FC250	A126 CI.B	
			Fundición de Acero**	_	A216 Gr.WCB	
(2)	Cubierta		Fundición Hierro	FC250	A126 CI.B	
2			Fundición de Acero**	_	A216 Gr.WCB	
3	Empaque de la Cubierta		Compuesto de Grafito	_	_	
4	Flotador		Acero inoxidable	SUS316L/303	AISI316L/303	
(5)	Unidad de Palanca		Acero inoxidable	_	_	
6	Unidad de Accionamiento		Acero inoxidable	_	_	
	Unidad válvula de admisión (Medio Motriz)	Válvula de admisión	Acero inoxidable	SUS303/440C	AISI303/440C	
7		Asiento de	Fund. de Acero Inox./	-/	A351 Gr.CF8/	
		Válvula	Acero inoxidable	SUS440C	AISI440C	
(8)	Unidad Válvula de Salida de Escape	Válvula de Escape	Acero inoxidable	SUS303/440C	AISI303/440C	
8		Asiento de Válvula	Acero inoxidable	SUS420F	AISI420F	
(9)	Válvula de	CK3MG	Fund. Acero Inox.	_	A351 Gr.CF8	
9	Retención***	CKF3MG	Fund. Acero Inox.	_	A351 Gr.CF8	


^{*} Equivalente ** Opción: Fund. Acero Inox. *** No mostrado, el modelo depende de la conexión de la GP10: CK3MG para el modelo roscado, CKF3MG para el modelo bridado

Capacidad de Descarga


• Factores de Corrección (para cabezales de llenado distintos a 860 mm)

NOTA:

- Una válvula de retención debe ser instalada en la entrada y salida del medio motriz. Para lograr las capacidades mayores con la configuración estándar de la GP10, deben usarse válvulas de retención TLV CK3MG o CKF3MG.
- La presión del medio motriz menos la contrapresión debe ser mayor a 0.5 bar.
- En aplicaciones de sistemas cerrados, el medio motriz debe ser compatible con el líquido que está siendo bombeado. Si un gas no condensable tal como aire o nitrógeno es usado como medio motriz, consulte a TLV para asistencia técnica.
- Un filtro debe ser instalado en la entrada del medio motriz y del medio bombeado. Copyright © TLV

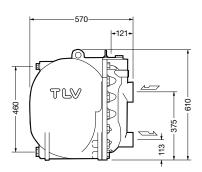
Ilustración del cabezal de llenado y de presiones

La capacidad de descarga es determinada por el medio motriz, la presión del medio motriz (P_m) y la contrapresión (P_o).

Tenga en cuenta que:

Capacidad de descarga × Factor de corrección

> Descarga Requerida


Consulting · Engineering · Services

Dimensiones

Salida de Escape Entrada del Medio Motriz Tubería Entrada Medio Bombeado Tubería Salida Medio Bombeado

Unidad: mm

Roscada*

Peso (kg): 124 (hierro fundido), 136 (fund. acero) * NPT, otros estándares disponibles

Peso (kg): 146 (Fundición de Acero)

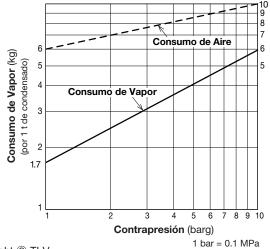
** ASME Clase 150 RF, otros estándares disponibles

Tamaño del receptor/colector

El receptor/colector debe tener suficiente capacidad para almacenar el condensado producido durante la operación y descarga de la PowerTrap. Un receptor generalmente será más grande que el colector ya que éste debe manejar el condensado ya sea como líquido o como vapor flash, y separar uno del otro de modo que solo el condensado sea enviado a la PowerTrap.

Tamaño del receptor (vapor flash esta involucrado) (Longitud: 1 m)

Vapor Flash Hasta (kg/h)	Diámetro del Receptor (mm)	Diámetro de la Tubería Venteo (mm)		
25	80	25		
50	100	50		
75	125	50		
100	150	80		
150	200	80		
200	200	100		
300	250	125		
400	300	125		
500	350	150		
700	400	200		
800	450	200		
1000	500	200		
1100	500	250		
1400	550	250		
1500	600	250		


3. Si el vapor flash se condensa antes de entrar al receptor/colector, compare las tablas 1. y 2. y elija el más grande de los dos resultar tamaños resultantes.

2. Tamaño del colector (vapor flash no esta involucrado)

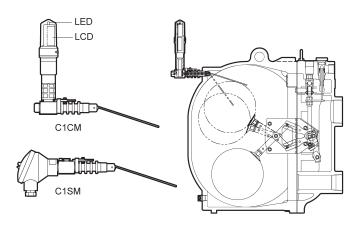
Cantidad de Condensado	Tamaño (mm) y longitud (m) del colector						
(kg/h)	40	50	80	100	150	200	250
300 o menos	1.2 m	0.7					
400	1.5	1.0					
500	2.0	1.2	0.5				
600		1.5	0.6				
800		2.0	0.8	0.5			
1000			1.0	0.7			
1500			1.5	1.0			
2000			2.0	1.3	0.6		
3000				2.0	0.9	0.5	
4000					1.2	0.7	
5000					1.4	0.8	0.5
6000					1.7	1.0	0.6
7000					2.0	1.2	0.7
8000						1.3	0.8
9000						1.5	0.9
10000						1.7	1.0

La longitud del colector puede ser reducida al 50% cuando la presión del medio motriz (Pm) dividida por la contrapresión (P_2) es 2 o mayor (cuando $Pm \div P_2 \ge 2$).

Consumo de Vapor o Aire (Medio Motriz)

Consumo de Aire (m³)* (por 1 t de condensado)

* Consumo de aire a 20 °C a presión atmosférica


Consulting · Engineering · Services

Contador de Ciclos (Opción)

Se pueden instalar dos tipos de contador de ciclos en la GP10 para monitorear el numero de ciclos de bombeado y así poder determinar el tiempo para el mantenimiento, o estimar el volumen del condensado que se bombea.

- C1CM (Unidad de Conteo):
 Unidad autónoma e independiente. Incluye un display de LCD para el contador e indicador de operación LED.
- C1SM (Terminal/Transmisor):
 Diseñado para su uso con equipos y sistemas de monitoreo remoto.

También disponibles modelos intrínsicamente seguros. Para mayores detalles favor de referirse a la hoja de especificaciones (SDS) del Contador de Ciclos.

