

PowerTrap

MODEL GP14-B CAST IRON CAST STEEL

MECHANICAL PUMP FOR CONDENSATE REMOVAL AND RECOVERY

Features

Pump for a wide range of applications. Ideal for condensate removal from vented receivers and sump drainage.

- 1. Handles high-temperature condensate without cavitation.
- 2. No electric power or additional level controls required, hence INTRINSICALLY SAFE.
- 3. Pump will operate with a low filling head.
- 4. Durable nickel-based alloy compression coil spring.
- Easy, inline access to internal parts simplifies cleaning and reduces maintenance costs
- 6. High-quality stainless steel internals and hardened working surfaces ensure reliability.
- 7. Cycle Counter installable as option.

Classification according to PED 2014/68/EU, fluid group 2

Size Categor		CE marking
DN 50, 80	П	With CE marking and Declaration of Conformity

Specifications

Model		GP14-B			
Body Material		Cast Iron	Cast Steel		
Connection	Pumped Medium Inlet & Outlet	Screwed	Screwed	Flanged	
	Motive Medium & Pump Exhaust	Screwed	Screwed	Flanged	
Size	Pumped Medium: Inlet × Outlet	3" × 2"	3" × 2"	DN 80 × 50	
	Motive Medium Inlet	1"	1"	DN 25	
	Pump Exhaust Outlet	1"	1"	DN 25	
Maximum Operating Pressure (barg) PMO		13			
Maximum Op	erating Temperature (°C) TMO	200			
Motive Medium Pressure Range (barg)		0.3 to 13	10 to 14		
Maximum Allo	owable Back Pressure	0.5 bar less than motive medium pressure used, but not to exceed 8 bar			
Volume of Eac	ch Discharge Cycle (ℓ)	Approx. 30			
Motive Mediu	m*	Saturated Steam, Compressed Air, Nitrogen			
Pumped Med	ium**	Steam Condensate, Water			

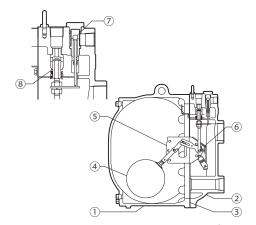
^{*} Do not use with toxic, flammable or otherwise hazardous fluids.

1 bar = 0.1 MPa

** Do not use for fluids with specific gravities under 0.85 or over 1, or for toxic, flammable or otherwise hazardous fluids.

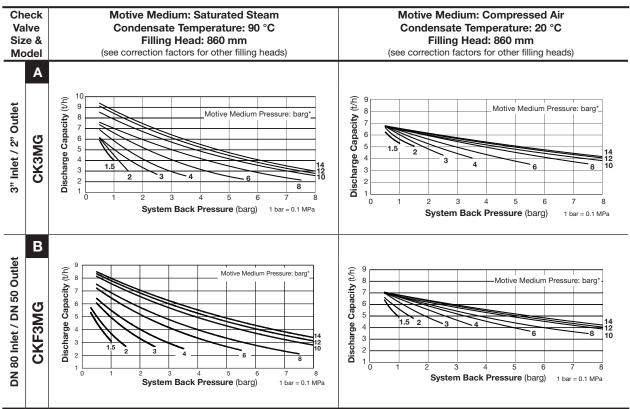
PRESSURE SHELL DESIGN CONDITIONS (**NOT** OPERATING CONDITIONS): Maximum Allowable Pressure (barg) PMA: 13 (Cast Iron), 16 (Cast Steel)

Maximum Allowable Temperature (°C) TMA: 220


CAUTION

To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted.

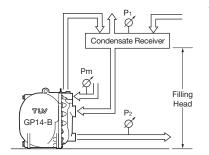
No.	Description		Material	DIN*	ASTM/AISI*
<u>(1)</u>	Body		Cast Iron FC250	0.6025	A126 CI.B
0			Cast Steel A216 Gr.WCB**	1.0619	_
(<u>2</u>)	Cover		Cast Iron FC250	0.6025	A126 CI.B
(2)			Cast Steel A216 Gr.WCB**	1.0619	_
3	Cover Gasket		Graphite/Stainless Stl. SUS316L	-/1.4404	-/AISI316L
4	Float		Stainless Steel SUS316L/303	1.4404/1.4305	AISI316L/303
(5)	Lever Unit		Stainless Steel	_	_
6	Snap-action Unit		Stainless Steel	_	_
	Motive Medium Intake Valve Unit	Intake Valve	Stainless Steel SUS303/440C	1.4305/1.4125	AISI303/440C
7		Valve Seat	Cast Stainless Stl. A351 Gr.CF8/ Stainless Steel SUS440C	1.4312/1.4125	-/AISI440C
(8)	Exhaust Valve Unit	Exhaust Valve	Stainless Steel SUS420J2	1.4028	AISI420
8		Valve Seat	Stainless Steel SUS630	1.4542	A567 630
(9)	Check Valve***	CK3MG	Cast Stainless Stl. A351 Gr.CF8	1.4312	_
9		CKF3MG	Cast Stainless Stl. A351 Gr.CF8	1.4312	_


^{*} Equivalent ** Option: Cast Stainless Steel

^{***} Not shown, model depends on GP14-B connection: CK3MG for screwed, CKF3MG for flanged

Copyright © TLV


Discharge Capacity


^{*} Motive medium pressure must not exceed 13 barg for cast iron GP14-B

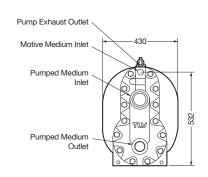
Correction Factor

For GP14-B installed with filling heads other than 860 mm (minimum filling head: 710 mm)

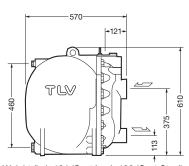
• Illustration of Filling Head and Pressures

The discharge capacity is determined by the motive medium, motive medium pressure (Pm) and back pressure (P2).

Make sure that:
Discharge Capacity × Correction Factor
> Required Flow Rate

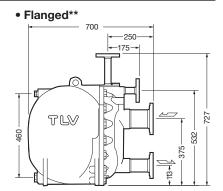

NOTE:

- A check valve must be installed at both the pumped medium inlet and outlet. To achieve the above capacities with the standard GP14-B configuration, TLV CK3MG or CKF3MG check valves must be used.
- Motive steam pressure minus back pressure must be greater than 0.5 bar.
- In closed system applications, the motive medium must be compatible with the liquid being pumped. If a non-condensible gas such as air or nitrogen is used as the motive medium, consult TLV for assistance.
- A strainer must be installed at the motive medium and pumped medium inlets.


Copyright © TLV SDS U2404-24

Dimensions

Units: mm



Screwed*

Weight (kg): 124 (Cast Iron), 136 (Cast Steel)

* BSP DIN 2999, other standards available

Weight (kg): 146 (Cast Steel)

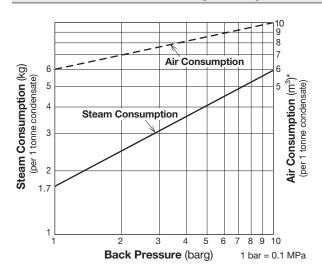
** DIN 2501 PN 25/40, ASME Class 300 RF, other standards available

Size of Receiver/Reservoir

The receiver/reservoir must have a capacity sufficient to store the condensate produced during the PowerTrap operation and discharge. A receiver will generally be larger than a reservoir because it must handle the condensate both as a liquid and as flash steam, and separate one from the other so that only condensate is sent to the PowerTrap.

1. Size of Receiver; flash steam is involved (Length: 1 m)

Flash steam up to	Receiver diameter	Vent pipe diameter		
kg/h	mm	mm		
25	80	25		
50	100	50		
75	125	50		
100	150	80		
150	200	80		
200	200	100		
300	250	125		
400	300	125		
500	350	150		
700	400	200		
800	450	200		
1000	500	200		
1100	500	250		
1400	550	250		
1500	600	250		


 If flash steam is condensed before it enters the receiver/reservoir, compare tables 1 and 2 and choose the larger of the two sizes.

2. Size of Reservoir; flash steam is not involved

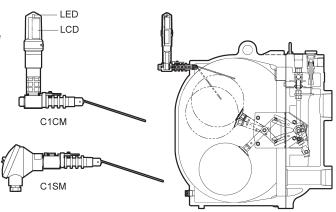
		<u> </u>					
Amount of condensate	Reservoir Diameter (mm) and Length (m)						
(kg/h)	40	50	80	100	150	200	250
300 or less	1.2 m	0.7					
400	1.5	1.0					
500	2.0	1.2	0.5				
600		1.5	0.6				
800		2.0	0.8	0.5			
1000			1.0	0.7			
1500			1.5	1.0			
2000			2.0	1.3	0.6		
3000				2.0	0.9	0.5	
4000					1.2	0.7	
5000					1.4	0.8	0.5
6000					1.7	1.0	0.6
7000					2.0	1.2	0.7
8000						1.3	0.8
9000						1.5	0.9
10000						1.7	1.0

Reservoir length can be reduced by 50% when the motive medium pressure (Pm) divided by back pressure (P2) equals 2 or greater (when Pm \div P2 \ge 2).

Steam or Air Consumption (Motive Medium)

* Equivalent consumption of air at 20 °C under atmospheric pressure

Copyright © TLV SDS U2404-24


Consulting · Engineering · Services

Cycle Counter (Option)

Two types of counter can be installed on the GP14-B to monitor the number of pumping cycles and help to determine the timing of maintenance, or estimate the volume of pumped condensate.

- C1CM (Counter Unit Type): Self-contained standalone unit. Includes an LCD counter display and an operation indicator LED.
- C1SM (Terminal Box Type):
 Designed for use with remote monitoring equipment
 and systems.

Intrinsically safe models are also available. See the Cycle Counter SDS for further details.

