STEAM COMPRESSOR

MODEL SC CARBON STEEL (DUCTILE CAST IRON)

STEAM COMPRESSOR THAT RECOVERS LOW PRESSURE STEAM AT HIGHER PRESSURE FOR REUSE

Features

Maximizes steam utilization by recovering excess low pressure steam at a higher pressure resulting in reduced energy costs and CO₂ emissions.

- 1. Reuses energy from excess steam by increasing it to low/medium pressure.
- 2. No electricity required, so suitable for explosion- proof areas (with COS pressure control valve).
- 3. Condensate recovery tank unnecessary with optional condensate recovery package: condensate is first reduced to atmospheric pressure, then repressurized to mid-pressure steam for reuse.
- 4. Employs a new, independently-designed high efficiency ejector.
- 5. Pressure control valve has a built-in separator and steam trap, maintaining dry motive steam, thereby ensuring high long-term efficiency and stable discharge pressure.

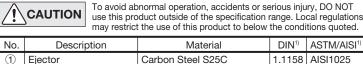
Pressure Equipment Directive (PED)

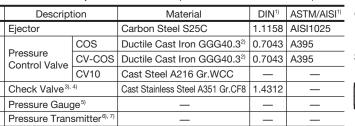
This product fully conforms to the requirements of the Pressure Equipment Directive (PED, 2014/68/EU) and features CE marking where applicable.

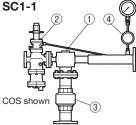
Specifications

Model*		Steam Compressor Unit							High-capacity Steam Compressor				
WODEI			SC1-1	SC1-2	SC1-3	SC2-1	SC2-2	SC2-3	SC7-1	SC7-3	SC14	SC21	SC31
Pressure Control Valve			COS	CV-COS	CV10	COS	CV-COS	CV10	COS	CV10			
Motive Inlet		DN 25		DN 50		DN 80		DN 100	DN 150	DN 200			
Connection	Discharg	Discharge Outlet		DN 80		DN 100		DN 150		DN 200	DN 250	DN 300	
	Suction Inlet		DN			80			DN 100		DN 150	DN 200	DN 250
Max. Operating Pressure (barg) PMO		1	6	20	16	10	20	16	20	20			
Motive Steam Pressure Range (barg)		6-	16	6-20	6-16	6-10	6-20	6-16	6-20	6-20			
Max. Operating Temperature (°C) TMO		220											
Maximum Steam Suction Capacity		n Capacity	See "Model Selection and Performance Graphs" on pages 3 and 4.										
Discharge Steam Pressure Maximum			Contact TLV**										
(Attainable Press		Minimum	1	0.	5	1	0.	5	1	0.5	Co	ontact TL	/**
Suction Steam Pressure Range			Atmospheric pressure or higher***										
Applicable Fluid			Steam										

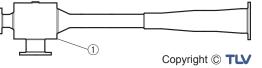
* Products exceeding specifications shown above may be able to be supplied depending on conditions.
1 bar = 0.1 M
** Depends on conditions such as the pressure and volume of motive steam and suction steam. See "Model Selection and Performance Graphs" on pages 3 and 4 for an approximate figure.
*** Contact TLV for cases at or lower than atmospheric pressure.


PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS): Maximum Allowable Pressure (barg) PMA: Steam Compressor Unit: 16 (COS/CV-COS), 20 (CV10); High-capacity Steam Compressor: 20


Maximum Allowable Temperature (°C) TMA: 220


(2)

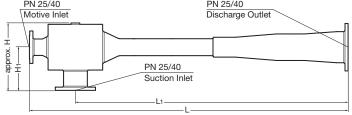
3 (4)


 $(\overline{\mathbf{5}})$

SC14/SC21/SC31

1 bar = 0.1 MPa

¹⁾ Equivalent materials ²⁾ Option: Cast Stainless Steel ³⁾ Check Valve for SC1/SC2 has screwed-in flange ⁴⁾ SC7 comes with connecting bolts, nuts, and gaskets ⁵⁾ COS only ⁶⁾ CV-COS/CV10 only ⁷⁾ Shown on reverse


System Configuration (Steam Compressor Unit)

	Steam Compressor l	Jnit SC1/SC2/SC7	Examples of Connecting Equipment*			
	COS Self-actuating Control Valve • Built-in separator and steam trap • No electric instrumentation required			Non-electric Condensate Recovery Pump System Package • Steam recovery at atmospheric pressure • Explosion-proof areas		
Pressure Control Valve	CV-COS Pneumatic Control Valve • Built-in separator and steam trap • High-precision control with no off-set			Flash Tank • Pressurized flash steam recovery		
	CV10 Pneumatic Control Valve • High-precision control with no off-set			Condensate Recovery Pump • High pressure condensate recovery		

*Actual available products may differ from those shown. Contact TLV for details.

Dimensions

Steam Compressor Unit SC1-1 PN 25/40 Motive Inlet COS shown арргох. Н oft approx. H1 PN 25/40 PN 25/40 Discharge Outlet Suction Inlet BSP 1/ Condensate Outlet L1 . - approx. L Steam Compressor Unit SC7-3 PN 25/40 Motive Inlet Pressure Transmitter CV10 shown approx. H -approx. H1-| PN 25/40 PN 25/40 Discharge Outlet Suction Inlet - L1 approx. L High-capacity Steam Compressor SC14/SC21/SC31 PN 25/40 PN 25/40

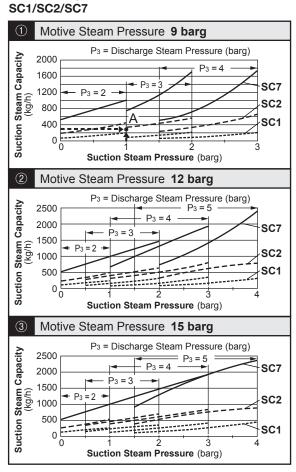
Stea	Steam Compressor Unit (mm								
		DN							
Model	Motive Inlet	Discharge Outlet	Suction Inlet	L	L1	Н	Ηı	Weight (kg)	
	PN 25/40								
SC1-1						782		50	
SC1-2	25	80		836	545	862	500	50	
SC1-3			80			785		35	
SC2-1			80			845		100	
SC2-2	50	100		1121	734	921	530	100	
SC2-3						835		85	
SC7-1	80	150	100	1715	1140	710	300	155	
SC7-3	00	150	100	1651	1140	645	500	130	

Screwed connections are BSP; other standards available

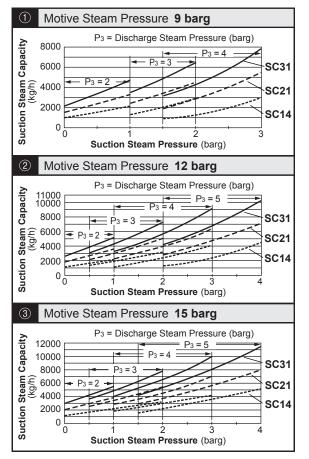
High-capacity Steam Compressor

DN

(r	n	m	1)	

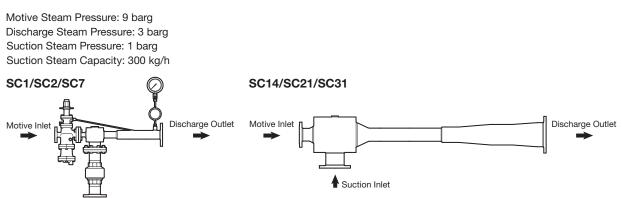

Model	Motive Inlet	Discharge Outlet	Suction Inlet	L	L1	Н	Ηı	Weight (kg)	
		PN 25/40)						
SC14	100	200	150	2220	1900	475	300	240	
SC21	150	250	200	2600	2155	620	400	440	
SC31	200	300	250	3000	2500	720	450	700	

Copyright © TLV


TLV

Model Selection Graphs

Steam Compressor Unit



High-capacity Steam Compressor SC14/SC21/SC31

Model Selection

Sample Selection Conditions

Suction Inlet

Using Model Selection Graph 1 for 9 barg motive steam pressure, point A represents the sample suction steam pressure and capacity conditions for the desired discharge steam pressure (P₃) of 3 barg.

In the 3 barg discharge steam pressure range, point A falls slightly below the SC2 line, therefore Model SC2 or SC7 should be chosen.

For suction steam capacities greater than that of SC31, contact TLV.

TLV

Performance Graphs

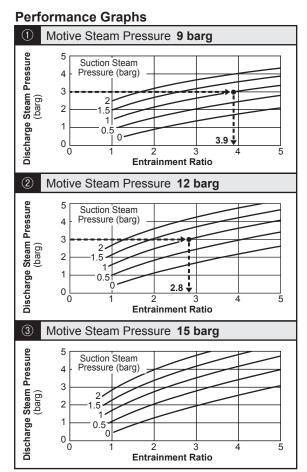
Capacity Check (Motive Steam Quantity and Discharge Steam Quantity)

At 9 barg motive steam pressure, according to Performance Graph ①, the entrainment ratio is approximately 3.9*. The motive steam quantity and discharge steam quantity can be calculated using the formulas A) and B) below. *Entrainment Ratio = Motive Steam Quantity (kg/h) / Suction Steam Quantity (kg/h)

If motive steam pressure is between those given in Performance Graphs (1) - (3), calculate using the higher and lower pressure graphs and estimate using the mean entrainment ratio.

Sample Calculation (For motive steam pressure of 10 barg) At 9 barg motive steam pressure, according to Performance Graph ①, the entrainment ratio is approximately 3.9. At 12 barg motive steam pressure, according to Performance Graph ②, the entrainment ratio is approximately 2.8.

The calculation in C) gives an approximate entrainment ratio of 3.5.


A) Motive steam quantity = Entrainment ratio × Suction steam quantity = $3.9 \times 300 \text{ kg/h}$

= 1170 kg/h

B) Discharge steam quantity = Motive steam quantity + Suction steam quantity

C) Sample Calculation (For motive steam pressure of 10 barg)

 $3.9 - \frac{(10 - 9 \text{ barg})}{(12 - 9 \text{ barg})} \times (3.9 - 2.8) = 3.5$

NOTE: The type-selection and capacity values from the above procedures are only approximations. Contact TLV for actual selection and performance data.

kg/h

Copyright © **TLV**

(M)

https://www.tlv.com

SDS U4802-04 Rev. 2/2019 Products for intended use only. Specifications subject to change without notice.