Teoria do Vapor 1. Fundamentos do Vapor O que é vapor? Principais Aplicações para Vapor Tipos de Vapor Vapor Flash Como ler uma Tabela de Vapor 2. Controle de Vapor Problemas como Controle de Temperatura Controle da Pressão do Vapor Comparação entre Aquecimento a Vapor e Aquecimento a Água Quente Fundamentos do Vapor a Vácuo Sistemas de Aquecimento a Vapor a Vácuo O que é Resfriamento a Vácuo? 3. Aquecimento com Vapor Aquecimento com Vapor Transferência Térmica do Vapor Coeficiente Global de Transferência de Calor O que é vapor a vácuo? 4. Fundamentos básicos do purgador de vapor O que é um Purgador de Vapor? A História dos Purgadores de Vapor #1 A História dos Purgadores de Vapor #2 Como funcionam os purgadores mecânicos: Um olhar para seus mecanismos e méritos Como funciona purgadores do tipo disco: uma visão sobre seu mecanismo e mérito 5. Seleção do purgador de vapor Seleção de Purgador de Vapor: Como a Aplicação Afeta na Seleção Seleção do Purgador de Vapor: Entendendo as Especificações Seleção do Purgador de Vapor: Fator de Segurança e Custo do Ciclo de Vida Purgadores e Orifícios - Parte 1 Purgadores e Orifícios - Parte 2 Fundição vs Forjamento Aplicação de diferentes tipos de purgador para vapor 6. Problemas de purgador de vapor Será que o Meu Purgador Está Vazando Vapor Vivo? Precauções para o Purgador de Controle de Temperatura Orientações para a Instalação de Purgadores Contrapressão do Purgador Drenagem Dupla Drenagem coletiva Bloqueio de Vapor Bloqueio de Ar 7. Sistema de Gerenciamento de Purgadores de Vapor Introdução ao gerenciamento de purgadores de vapor Perdas de Vapor dos Purgadores – o que isso custa para você Guia para inspeção do purgador de vapor 8. Golpe de Aríete Golpe de Aríete: O que é? Golpe de Aríete: O Mecanismo Golpe de Aríete: Causa e Localização Golpe de Aríete: Nas Linhas de Distribuição de Vapor Golpe de Aríete: Nos Equipamentos Golpe de Aríete: Nas Tubulações de Transporte de Condensado Golpe de Aríete: Conclusão 9. Minimização de riscos Steam System Optimization and Risk Mitigation 10. Qualidade do Vapor Vapor úmido vs. Vapor seco: A importância do fator de secura do vapor Separadores e seu papel no sistema de vapor Vapor Limpo e Puro Por que a Temperatura Não Aumenta? Remoção de Ar do Equipamento a Vapor Eliminadores de Ar para Vapor 11. Distribuição de vapor Melhores Práticas para Remoção do Condensado nas Linhas de Vapor Dicas de Instalação para Purgadores de Vapor em Tubulação Principal do Vapor Erosão na Tubulação do Condensado e Vapor Corrosão na Tubulação de Vapor e Condensado 12. Recuperação de Condensado Introdução sobre Recuperação do Condensado Retornando o condensado e Quando usar bombas de condensado Recuperação de condesado: Sistemas ventilado vs. pressurizado Tubulação de Recuperação de Condensado O que é estol? Método de Prevenção do Estol Cavitação em Bombas de Condensado 13. Eficiência Energética Isolamento Térmico dos Purgadores Compressores de Vapor Porque economizar energia? Estratégias de Gestão para Conservação de Energia Recuperação de Nuvens de Vapor e Calor Residual Recuperação de calor residual Dicas para economia de energia em caldeiras Dicas de economia de energia da tubulação de vapor Dicas de economia de energia para equipamentos a vapor Prevenção de Vazamentos de Vapor 14. Ar Comprimido Remoção do Condensado do Ar Comprimido Evitando o Entupimento nos Purgadores de Ar Dicas de economia de Energia para Compressor de Ar 15. Outras Válvulas Tipos de Válvulas Válvulas de Desvio Instalação e Benefícios da Válvula de Retenção Válvulas Redutoras de Pressão para Vapor Transferência Térmica do Vapor Conteúdo: Propriedades Básicas do Aquecimento a Vapor Quando considerado do ponto de vista de um meio de calor, o vapor apresenta propriedades superiores não oferecidas por outros meios de calor. Entre elas, as duas a seguir são as de mais destaque: Proporciona aquecimento uniforme Proporciona aquecimento rápido Neste artigo, abordaremos estas propriedades a partir do ponto de vista da transferência térmica. Como o Vapor Fornece Aquecimento Estável e Uniforme? No caso do vapor saturado, se a pressão do vapor for conhecida, então a temperatura do vapor poderá ser determinada. A pressão muda instantaneamente dentro do espaço. Quando o vapor saturado é condensado, isto ocorre à temperatura de saturação, e a água saturada (condensado) formada tem a mesma temperatura do vapor saturado. Isto significa que se a pressão na superfície de transferência térmica (a jaqueta ou o interior espiral dos equipamentos) for mantida constante, poderá ocorrer aquecimento contínuo com a mesma temperatura em todas as partes da superfície de transferência térmica. Velocidade de Aquecimento A quantidade de transferência térmica é indicada pelo coeficiente transferência térmica (= coeficiente de filme ou transferência térmica). As unidades são em [W/m² K]. W = J/seg., então se ocorrer troca de calor na mesma área de superfície da transferência térmica e com a mesma diferença de temperatura, quanto maior for a taxa de transferência térmica menor será o tempo necessário para o aquecimento. Os valores aproximados para as taxas de transferência térmica de água quente e vapor são os seguintes: A taxa com que o calor é transferido para a superfície de transferência térmica de um trocador de calor usando água quente como fonte de calor: 1000 – 6000 [W/m² K] A taxa com que o calor é transferido para a superfície de transferência térmica de um trocador de calor usando vapor como fonte de calor: 6000 – 15000 [W/m² K] Em situações reais de aquecimento, o processo de transferência térmica será uma combinação do mecanismo de transferência térmica dentro das paredes do trocador de calor e o mecanismo de transferência térmica da superfície da parede do trocador de calor para o produto sendo aquecido. As avaliações do aquecimento devem usar um coeficiente geral de transferência térmica [W/m² K] para indicar esta combinação. Este coeficiente varia muito de trocador de calor para trocador de calor, mas ainda assim, o aquecimento a vapor apresenta números 1,5 – 2 vezes maiores que aqueles do aquecimento por água quente. Como o Vapor Fornece Aquecimento Rápido? Transferência Térmica do Condensado (Vapor) O segredo, é claro, é a transferência térmica provocada pelo processo de condensação. O calor latente contido no vapor é liberado no instante que o vapor se condensa na fase líquida. A quantidade de calor latente liberada é de 2 – 5 vezes maior que a quantidade de calor sensível na água quente (água saturada) após a condensação. Este calor latente é liberado instantaneamente e é transferido através de um trocador de calor para o produto sendo aquecido. Transferência Térmica por Convecção (Água e Óleo Quentes) Em comparação, a água e o óleo quentes são usados no aquecimento convectivo, o que não envolve uma mudança de fase. Ao invés disso, o meio de calor reduz sua própria temperatura para transferir calor para o produto sendo aquecido. Na indústria, é normal usar a convecção forçada através de equipamentos como uma bomba para criar um contra fluxo na superfície de transferência térmica. Aquecimento com Vapor Coeficiente Global de Transferência de Calor Também em TLV.com Purgadores de Vapor de Boia Livre para Uso em Alta Temperatura e Alta Pressão Seminários de Treinamento sobre o Vapor e Condensado Calculadora de Engenharia Boletim do Vapor: Arquivo - Email Revista