Steam Theory 1. Basics of Steam What is Steam? Principal Applications for Steam Types of Steam Flash Steam How to Read a Steam Table 2. Steam Heating Heating with Steam Steam Heating Mechanism Overall Heat Transfer Coefficient What is Vacuum Steam? Tracing the Causes of Heat Maintenance Issues 3. Basics of Steam Traps What is a Steam Trap? The History of Steam Traps #1 The History of Steam Traps #2 How Mechanical Traps Work: A Look at their Mechanism and Merits How Disc Traps Work: A Look at their Mechanism and Merits How Bimetal-Type Thermostatic Steam Traps Work: A Look at their Mechanisms and Merits 4. Steam Trap Selection Steam Trap Selection: How Application Affects Selection Steam Trap Selection: Understanding Specifications Steam Trap Selection: Safety Factor and Life Cycle Cost Traps and Orifices Part 1 Traps and Orifices Part 2 Casting vs. Forging Applications of Different Types of Steam Traps Don't Get Steamed : Selecting Steam Trap Design Understanding Steam Traps Compare Two Fixed Orifice Venturi Products to a Variable Orifice Free Float Steam Trap 5. Steam Trap Problems Is My Trap Leaking Live Steam? Temperature Control Trap Precautions Trap Installation Orientation Trap Back Pressure Double Trapping Group Trapping Steam Locking Air Binding My Steam Trap Is Good - Why Doesn't It Work? 6. Steam Trap Management Introduction to Steam Trap Management Steam Trap Losses - what it costs you A Guide to Steam Trap Testing Implement a Sustainable Steam Trap Management Program Impact Plant Performance by Improving the Steam System 7. Water Hammer Water Hammer: What is it? Water Hammer: The Mechanism Water Hammer: Cause and Location Water Hammer: In Steam Distribution Lines Water Hammer: In Equipment Water Hammer: In Condensate Transport Piping Identifying Water Hammer Using a Thermal Camera Mitigation of Water Hammer in Vertical Flashing Condensate Transport Piping Stop Knocking Your Condensate Return Steam Trap Management: Do Something; Anything. Please! 8. Risk Mitigation Steam System Optimization and Risk Mitigation Risk Based Methodology for Industrial Steam Systems Why Bad Things Happen to Good Steam Equipment Beware of the Dangers of Cold Traps Steam System Winterization: How to Protect Your Plant 9. Steam Quality Wet Steam vs. Dry Steam: The Importance of the Steam Dryness Fraction Separators and their Role in the Steam System Clean & Pure Steam Temperature Problems Caused by Air Removing Air from Steam Equipment Air Vents for Steam Steam Quality Considerations 10. Steam Distribution Best Practices for Condensate Removal on Steam Lines Installation Tips for Steam Traps on Steam Mains Erosion in Steam and Condensate Piping Corrosion in Steam and Condensate Piping Allocate New Plant Focus to Steam System Design—Part 1 11. Condensate Recovery Introduction to Condensate Recovery Returning Condensate and When to Use Condensate Pumps Condensate Recovery: Vented vs. Pressurized Systems Condensate Recovery Piping What is Stall? Methods of Preventing Stall Cavitation in Condensate Pumps Steam Heat Exchangers are Underworked and Over-Surfaced Allocate New Plant Focus to Steam System Design—Part 2 Optimize Reboiler Performance via Effective Condensate Drainage Vent Away Condensate Pump Frustrations in a Flash 12. Energy Efficiency Tips to improve steam plant efficiency Advice on Winter Preparation for Steam Systems Insulating Traps Steam Compressors Why Save Energy? Management Strategies for Conserving Energy Recovering Steam Clouds and Waste Heat Waste Heat Recovery Boiler Energy Saving Tips Steam Line Energy Saving Tips Steam-Using Equipment Energy Saving Tips Preventing Steam Leaks Handle Steam More Intelligently Optimize the Entire Steam System Use Available Data to Lower System Cost 13. Compressed Air / Gas Removing Condensate from Compressed Air Preventing Clogging of Air Traps Air Compressor Energy Saving Tips Improving Compressed Air Quality and Countermeasures Against Leaks 14. Other Valves Types of Manual Valves Bypass Valves Check Valve Installation and Benefits Pressure Reducing Valves for Steam Temperature Problems Caused by Air Contents: Is the supply steam to your process at the correct pressure, but for some reason under-temperature? Does the product fail to heat up to the correct temperature? Air can diffuse and mix with steam at start-up or during regular operation, which effectively reduces the steam pressure and results in reduced heat transfer. This phenomenon can be explained by Dalton's Law of Partial Pressures. Dalton’s Law of Partial Pressures Dalton’s law of partial pressures states that: If different types of gas are mixed together, the total pressure of the gas mixture equals the sum of the partial pressures of each type of gas. PTotal = P1 + P2 + ... + Pn Therefore, if equipment contains other gases in addition to steam, the other gases will affect the total pressure shown on the vessel's pressure gauge. Animation of Dalton's Law of Partial Pressures Why the Temperature Doesn’t Rise Most types of steam equipment fill up with air when not in use. This air needs be removed from the system at start-up for proper operation. If the air is not removed, the air will stay within the equipment and prevent the steam space from completely filling with saturated steam. When the pressure of the steam space is then measured, the pressure indicated is that of the mixture of air and steam: PTotal = P1 (Air) + P2 (Steam) When the steam space contains a mixture of steam and air, the pressure indicated by the pressure gauge (PTotal) cannot be used to accurately assess steam temperature, represented by P2. The actual steam temperature will therefore always be lower than the expected value, which can lead to insufficient temperatures. Calculating the % Air Mixed with Steam If you know the temperature within the steam space, the air % by volume can easily be calculated using TLV's online Engineering Calculator. Engineering Calculator Access Now Simply enter the inlet steam pressure and steam-air mixture temperature to calculate the air % of total volume (as well as obtain the saturated steam temperature). Additional Note Although not directly connected to Dalton's law of partial pressure, it is important to note that air can greatly interfere with heat transfer because it is a poor heat conductor. Air can also cause long start-up times because it restricts steam flow, as well as cause corrosion when it is mixed with water or condensate. In addition, although this article uses the term "air", these problems not only relate to air but also other non-condensable gases such as those that sometimes form as a by-product of water treatment. Clean & Pure Steam Removing Air from Steam Equipment Also on TLV.com Air Vents Steam and Condensate Training Seminars Engineering Calculator Steam Bulletin: Archive - Email Magazine