Steam Theory 1. Basics of Steam What is Steam? Principal Applications for Steam Types of Steam Flash Steam How to Read a Steam Table 2. Steam Heating Heating with Steam Steam Heating Mechanism Overall Heat Transfer Coefficient What is Vacuum Steam? Tracing the Causes of Heat Maintenance Issues 3. Basics of Steam Traps What is a Steam Trap? The History of Steam Traps #1 The History of Steam Traps #2 How Mechanical Traps Work: A Look at their Mechanism and Merits How Disc Traps Work: A Look at their Mechanism and Merits How Bimetal-Type Thermostatic Steam Traps Work: A Look at their Mechanisms and Merits 4. Steam Trap Selection Steam Trap Selection: How Application Affects Selection Steam Trap Selection: Understanding Specifications Steam Trap Selection: Safety Factor and Life Cycle Cost Traps and Orifices Part 1 Traps and Orifices Part 2 Casting vs. Forging Applications of Different Types of Steam Traps Don't Get Steamed : Selecting Steam Trap Design Understanding Steam Traps Compare Two Fixed Orifice Venturi Products to a Variable Orifice Free Float Steam Trap 5. Steam Trap Problems Is My Trap Leaking Live Steam? Temperature Control Trap Precautions Trap Installation Orientation Trap Back Pressure Double Trapping Group Trapping Steam Locking Air Binding My Steam Trap Is Good - Why Doesn't It Work? 6. Steam Trap Management Introduction to Steam Trap Management Steam Trap Losses - what it costs you A Guide to Steam Trap Testing Implement a Sustainable Steam Trap Management Program Impact Plant Performance by Improving the Steam System 7. Water Hammer Water Hammer: What is it? Water Hammer: The Mechanism Water Hammer: Cause and Location Water Hammer: In Steam Distribution Lines Water Hammer: In Equipment Water Hammer: In Condensate Transport Piping Identifying Water Hammer Using a Thermal Camera Mitigation of Water Hammer in Vertical Flashing Condensate Transport Piping Stop Knocking Your Condensate Return Steam Trap Management: Do Something; Anything. Please! 8. Risk Mitigation Steam System Optimization and Risk Mitigation Risk Based Methodology for Industrial Steam Systems Why Bad Things Happen to Good Steam Equipment Beware of the Dangers of Cold Traps Steam System Winterization: How to Protect Your Plant 9. Steam Quality Wet Steam vs. Dry Steam: The Importance of the Steam Dryness Fraction Separators and their Role in the Steam System Clean & Pure Steam Temperature Problems Caused by Air Removing Air from Steam Equipment Air Vents for Steam Steam Quality Considerations 10. Steam Distribution Best Practices for Condensate Removal on Steam Lines Installation Tips for Steam Traps on Steam Mains Erosion in Steam and Condensate Piping Corrosion in Steam and Condensate Piping Allocate New Plant Focus to Steam System Design—Part 1 11. Condensate Recovery Introduction to Condensate Recovery Returning Condensate and When to Use Condensate Pumps Condensate Recovery: Vented vs. Pressurized Systems Condensate Recovery Piping What is Stall? Methods of Preventing Stall Cavitation in Condensate Pumps Steam Heat Exchangers are Underworked and Over-Surfaced Allocate New Plant Focus to Steam System Design—Part 2 Optimize Reboiler Performance via Effective Condensate Drainage Vent Away Condensate Pump Frustrations in a Flash 12. Energy Efficiency Tips to improve steam plant efficiency Advice on Winter Preparation for Steam Systems Insulating Traps Steam Compressors Why Save Energy? Management Strategies for Conserving Energy Recovering Steam Clouds and Waste Heat Waste Heat Recovery Boiler Energy Saving Tips Steam Line Energy Saving Tips Steam-Using Equipment Energy Saving Tips Preventing Steam Leaks Handle Steam More Intelligently Optimize the Entire Steam System Use Available Data to Lower System Cost 13. Compressed Air / Gas Removing Condensate from Compressed Air Preventing Clogging of Air Traps Air Compressor Energy Saving Tips Improving Compressed Air Quality and Countermeasures Against Leaks 14. Other Valves Types of Manual Valves Bypass Valves Check Valve Installation and Benefits Pressure Reducing Valves for Steam Introduction to Condensate Recovery Contents: What is Condensate? Condensate is the liquid formed when steam passes from the vapor to the liquid state. In a heating process, condensate is the result of steam transferring a portion of its heat energy, known as latent heat, to the product, line, or equipment being heated. Example of Steam Heating Process When the latent heat of steam is transferred to heat the product, that steam condenses into water, which is also known as “condensate”. Latent Heat vs. Sensible Heat In steam-using industries, Latent Heat refers to the energy required to transform water into steam, also known as the Enthalpy or Heat of Vaporization. By absorbing this Latent Heat, water becomes steam, and by releasing it, steam reverts to high temperature water (condensate). When steam condenses, at the threshold or instant of phase change, the condensate temperature is the same as steam because only the latent heat has been lost, and the full amount of sensible heat remains. This condition is known as “Saturated Water”. Not wasting, but rather recovering and reusing as much of this sensible heat as possible is one of the main reasons behind condensate recovery. Water Changing States A change in the temperature of a solid, liquid or gas represents an increase/decrease in sensible heat. A change in state, such as ice turning into water or water into steam, represents an increase/decrease in latent heat. What is Condensate Recovery? If 1 t/h of steam is supplied to equipment for a heating process, then the same amount of condensate (1 t/h) needs to be discharged from the equipment. Condensate recovery is a process to reuse the water and sensible heat contained in the discharged condensate. Recovering condensate instead of throwing it away can lead to significant savings of energy, chemical treatment and make-up water. Condensate can be reused in many different ways, for example: As heated feedwater, by sending hot condensate back to the boiler’s deaerator As pre-heat, for any applicable heating system As steam, by reusing flash steam As hot water, for cleaning equipment or other cleaning applications The Benefits of Condensate Recovery Reusing hot condensate can lead to considerable savings in terms of energy and water resources, as well as improve working conditions and reduce your plant's carbon footprint. Reduced Fuel Costs Condensate contains a significant amount of sensible heat that can account for about 10% to 30% of the initial heat energy contained in the steam. Feeding the boiler with high-temperature condensate can maximize boiler output because less heat energy is required to turn water into steam. When efficiently recovered and reused, it can even be possible to reduce boiler fuel needs by up to 10 to 20%. Lower Water-related Expenses As long as any impurities picked up during condensate transport are removed, condensate can be reused as boiler feedwater, reducing water supply and treatment costs, as well as costs associated with cold water used to lower condensate temperatures before sewering, where applicable. Positive Impact on Safety and the Environment Reducing boiler fuel needs through condensate recovery leads to less air pollution by lowering CO2, NOx and SOx emissions. Additionally, condensate recovery lines can also limit vapor clouds to reduce noise generated from atmospheric condensate discharge and help prevent build-up of water on the ground, considerably improving a plant’s work environment. Depending on the amount of condensate being recovered and reused, other benefits may include a reduced need for boiler blowdown through better feedwater quality, and less corrosion in the system as water quality becomes more consistent throughout the grid. Condensate Recovery vs. No Recovery No Condensate Recovery If condensate is not recovered, its energy (sensible heat), chemical treatment, and water are wasted, leading to greater fuel and water-related costs. Condensate Recovery Reusing condensate as boiler feedwater can help reduce make-up water and treatment costs. The related energy savings can also help significantly reduce boiler fuel costs. Allocate New Plant Focus to Steam System Design—Part 1 Returning Condensate and When to Use Condensate Pumps Also on TLV.com Condensate Recovery Pump for Open Systems Steam and Condensate Training Seminars Engineering Calculator Steam Bulletin: Archive - Email Magazine