Teoría de Vapor 1. Fundamentos de Vapor Que es el Vapor de Agua? Aplicaciones Principales para el Vapor de Agua Tipos de vapor de Agua Vapor Flash Cómo Leer una Tabla de Vapor 2. Control del vapor Problemas con el control de la temperatura Control de la presión del vapor Comparación de calefacción por vapor y por agua caliente Fundamentos del vapor al vacío Sistemas de calentamiento por vapor al vacío ¿Qué es la refrigeración al vacío? 3. Calentamiento con Vapor Calentando con Vapor Transferencia de Calor del Vapor Coeficiente total de transferencia de calor Que es el Vapor al Vacio? 4. Teoría Básica de Trampas de Vapor ¿Qué es una Trampa de Vapor? La Historia de las Trampas de Vapor Parte 1 La Historia de las Trampas de Vapor Parte 2 Cómo trabajan las trampas Mecánicas: Una mirada a su mecanismo y méritos Cómo Trabaja una Trampa de Disco: Una Mirada a su Mecanismo y sus Méritos Cómo funcionan las trampas de vapor termostáticas de tipo bimetálico: Una mirada a sus mecanismos y ventajas 5. Selección de Trampas de Vapor Selección de Trampas de Vapor: Cómo la Aplicación Afecta la Selección Selección de Trampas de Vapor: Entendiendo las Especificaciones Selección de Trampas de Vapor: Factor de Seguridad y Costo de Ciclo de Vida Trampas y Orificios #1 Trampas y Orificios #2 Fundición VS. Forjado? Aplicaciones de diferentes tipos de trampas de vapor 6. Problemas de Trampeo Se Encuentra Fugando Vapor Vivo mi Trampa? Precauciones de la Trampa de Control de Temperatura Orientación en la Instalación de la Trampa Contrapresión en las Trampas Doble Trampeo Trampeo en grupo Bloqueo por Vapor Bloqueo por Aire 7. Sistema de Gerenciamiento de Trampas de Vapor Introducción al Gerenciamiento de Trampas de Vapor El Costo de las Pérdidas de Vapor Una Guía para la Inspección de Trampas de Vapor 8. Golpe de Ariete Golpe de Ariete: Que es? Golpe de Ariete: El Mecanismo Golpe de Ariete: Locacion y Causa Golpe de Ariete: En Líneas de Distribución de Vapor Golpe de Ariete: En Equipos Golpe de Ariete: En Tubería de Transporte de Condensado Golpe de Ariete: Conclusión Mitigación del golpe de ariete intermitente en la tubería vertical de retorno de condensado 9. Mitigación de riesgos Steam System Optimization and Risk Mitigation 10. Calidad de Vapor Vapor Húmedo vs. Vapor Seco: La Importancia del Porcentaje de Sequedad Separadores y su Papel en Sistemas de Vapor Vapor Limpio y Puro Problemas de Temperatura Ocasionados por el Aire Removiendo el Aire de Equipos Usuarios de Vapor Venteos de Aire para Vapor 11. Distribución de Vapor Las Mejores Practicas para la Remoción de Condensado en Líneas Principales de Vapor Recomendaciones para instalación de Trampas de Vapor en Cabezales Principales Erosión en Tuberías de Vapor y Condensado La Corrosión en Tuberías 12. Recuperación de Condensado Introducción a la Recuperación de Condensado Retorno de Condensado y Cuándo Usar Bombas de Condensado Recuperación de Condensado: Sistemas Venteados vs. Presurizados Tubería de Recuperación de Condensado Que es el Stall? Métodos para Prevenir el Stall Cavitación en Bombas de Condensado 13. Eficiencia Energética Aislamiento de Trampas Compresor de Vapor ¿Por qué ahorrar energía? Estrategias de Gestión para el Ahorro de Energía Recuperación de nubes de vapor y calor residual Recuperación de Calor Residual Consejos para Ahorro de Energía en Calderas Consejos de ahorro de energía para líneas de vapor Consejos de ahorro de energía en equipos usuarios de vapor. Prevenir las fugas de vapor 14. Aire Comprimimdo Removiendo el Condensado del Aire Comprimido Previniendo el bloqueo en Trampas de Aire Consejos de ahorro de energía en compresores de aire 15. Otras Válvulas Tipos de Válvulas y Sus Aplicaciones Válvulas de Bypass Beneficios de la Instalación de la Válvula Check Válvulas Reductoras de Presión para Vapor Que es el Vapor de Agua? Contenidos: El vapor de agua es el gas formado cuando el agua pasa de un estado liquido a uno gaseoso. A un nivel molecular esto es cuando las moléculas de H2O logran liberarse de las uniones (ej. Uniones de hidrógeno) que las mantienen juntas. Como funciona el vapor de agua En el agua liquida, las moléculas de H2O están siendo unidas y separadas constantemente. Sin embargo, al calentar las moléculas de agua, las uniones que conectan a las moléculas comienzan a romperse mas rápido de lo que pueden formarse. Eventualmente, cuando suficiente calor es suministrado, algunas moléculas se romperán libremente. Estas moléculas "libres" forman el gas transparente que nosotros conocemos como vapor, o mas especifico vapor seco. Vapor Húmedo vs. Vapor Seco En industrias usuarias de vapor, existen dos términos para el vapor los cuales son, vapor seco (también conocido como "vapor suturado") y vapor húmedo. Vapor seco aplica a vapor cuando todas sus moléculas permanecen en estado gaseoso. Vapor húmedo aplica cuando una porción de sus moléculas de agua han cedido su energía (calor latente) y el condensado forma pequeñas gotas de agua. Tome por ejemplo una pequeña tetera con agua a su punto de ebullición. El agua primeramente es calentada , y conforme el agua absorbe mas y mas calor, sus moléculas se agitan mas y mas y empieza a hervir. Una vez que suficiente energía es absorbida, se evaporiza parte del agua, lo que puede representar un incremento de tanto como 1600X en volumen molecular. En algunas ocasiones se puede observar una pequeña neblina saliendo de la boquilla de la tetera. Esta neblina es un ejemplo de que tan seco es el vapor, cuando se libera en una atmosfera mas fría, pierde un poco de su energía al transferirla al aire. Si se pierde suficiente energía las uniones intermoleculares se empiezan a formar nuevamente, y se pueden observar pequeñas gotas de agua en el aire. Esta mezcla de agua en estado liquido (pequeñas gotas) y estado gaseoso (vapor) recibe el nombre de vapor húmedo. Para mayor información acerca de los varios tupos de vapor y su naturaleza, lea el siguiente articulo: Tipos de vapor de Agua Vapor como Fuente de energía El vapor jugo un papel importante en la revolución industrial. La modernización del motor de vapor a principios del siglo 18 llevo a mayores descubrimientos tales como la invención de la locomotora de vapor y el barco a vapor, por no mencionar el horno y el martillo de vapor. Este ultimo sin hacer referencia Golpe de Arieter el cual se puede presentar en la tubería de vapor, si mas bien a un martillo impulsado por vapor que se utilizaba para dar forma a fundiciones. Hoy en día, sin embargo, los motores de combustión interna y la electricidad prácticamente han remplazado al vapor como fuente de energía. Sin embargo, el vapor es ampliamente usado en las plantas de generación eléctrica y para aplicaciones industriales de gran tamaño. El Vapor como Fuente de Calor El vapor es mayormente conocido por sus aplicaciones en calentamiento, fungiendo tanto como fuente directa e indirecta de calor. Calentamiento Directo de Vapor El método de calentamiento directo de vapor se refiere al proceso en el cual el vapor esta en contacto directo con el producto que esta siendo calentado. El ejemplo que se muestra en la parte inferior se pueden observar que la botana China esta siendo calentada por el vapor. Una canasta de vapor es situada sobre una olla con agua hirviendo. Confirme el agua continua hirviendo, el vapor se eleva hacia la canasta y cocina la comida. En esta configuración, la caldera (olla) y el recipiente de vapor (canasta) son combinadas. El principio detrás de la vaporización de la comida es aquella en la cual se permite que el vapor entre en contacto directo con el producto a ser calentado, el calor latente del vapor puede ser transferido a la comida directamente, y las gotas de agua formadas por la condensación pueden suministrar hidratación. En la industria, el método de calentamiento directo de vapor generalmente es usado para cocinar, esterilización, vulcanización y otros procesos. Calentamiento Indirecto de Vapor El calentamiento indirecto de vapor se refiere a los procesos en donde el vapor no entra en contacto directo con el producto a calentar. Es ampliamente utilizado en la industria ya que provee un calentamiento rápido y parejo. Este método generalmente utiliza un intercambiador de calor para calentar el producto. La ventaja que ofrece este método sobre el calentamiento directo de vapor es que las gotas de agua formadas durante el calentamiento no afectaran al producto. Por lo tanto el vapor puede ser usado en una variedad de aplicaciones tales como secado, derretimiento, hervimiento etc. El calentamiento indirecto de vapor es usado en un gran rango de procesos como la preparación de alimentos y bebidas, neumáticos, papel, cartón, combustibles como la gasolina y para medicina por solo nombrar algunos. Para mayores detalles en el uso del vapor en la industria, lea el siguiente articulo en: Aplicaciones Principales para el Vapor de Agua Teoría de Vapor Indice Aplicaciones Principales para el Vapor de Agua También en TLV.com Servicio Tipos de vapor de Agua Seminarios de Entrenamiento en Vapor y Condensado Tabla de Vapor Saturado por Presión Boletín del Vapor: Archivo - Revista Email